Xylene Monooxygenase Catalyzes the Multistep Oxygenation of Toluene and Pseudocumene to Corresponding Alcohols, Aldehydes, and Acids in Escherichia coli JM101

Xylene monooxygenase of Pseudomonas putida mt-2 catalyzes the methylgroup hydroxylation of toluene and xylenes. To investigate the potential of xylene monooxygenase to catalyze multistep oxidations of one methyl group, we tested recombinant Escherichia coli expressing the monooxygenase genes xylM an...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 275; no. 14; pp. 10085 - 10092
Main Authors Bühler, Bruno, Schmid, Andreas, Hauer, Bernhard, Witholt, Bernard
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.04.2000
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Xylene monooxygenase of Pseudomonas putida mt-2 catalyzes the methylgroup hydroxylation of toluene and xylenes. To investigate the potential of xylene monooxygenase to catalyze multistep oxidations of one methyl group, we tested recombinant Escherichia coli expressing the monooxygenase genes xylM and xylA under the control of thealk regulatory system of Pseudomonas oleovoransGpo1. Expression of xylene monooxygenase genes could efficiently be controlled by n-octane and dicyclopropylketone. Xylene monooxygenase was found to catalyze the oxygenation of toluene, pseudocumene, the corresponding alcohols, and the corresponding aldehydes. For all three transformations 18O incorporation provided stong evidence for a monooxygenation type of reaction, withgem-diols as the most likely reaction intermediates during the oxygenation of benzyl alcohols to benzaldehydes. To investigate the role of benzyl alcohol dehydrogenase (XylB) in the formation of benzaldehydes, xylB was cloned behind and expressed in concert with xylMA. In comparison to E. coliexpressing only xylMA, the presence of xylBlowered product formation rates and resulted in back formation of benzyl alcohol from benzaldehyde. In P. putida mt-2 XylB may prevent the formation of high concentrations of the particularly reactive benzaldehydes. In the case of high fluxes through the degradation pathways and low aldehyde concentrations, XylB may contribute to benzaldehyde formation via the energetically favorable dehydrogenation of benzyl alcohols. The results presented here characterize XylMA as an enzyme able to catalyze the multistep oxygenation of toluenes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.275.14.10085