Gene structures, biochemical characterization and distribution of rat melatonin receptors

G-protein coupled receptors for the pineal hormone melatonin have been partially cloned from rats. However, insufficient information about their cDNA sequences has hindered studies of their distribution and physiological responses to melatonin using rats as an animal model. We have cloned cDNAs of t...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physiological sciences Vol. 59; no. 1; pp. 37 - 47
Main Authors Ishii, Hirotaka, Tanaka, Nobuyuki, Kobayashi, Momoko, Kato, Masakatsu, Sakuma, Yasuo
Format Journal Article
LanguageEnglish
Published Japan Springer Japan 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:G-protein coupled receptors for the pineal hormone melatonin have been partially cloned from rats. However, insufficient information about their cDNA sequences has hindered studies of their distribution and physiological responses to melatonin using rats as an animal model. We have cloned cDNAs of two rat membrane melatonin receptor subtypes, melatonin receptor 1a (MT1) and melatonin receptor 1b (MT2), using a rapid amplification of cDNA end (RACE) method. The rat MT1 and MT2 cDNAs encode proteins of 353 and 364 amino acids, respectively, and show 78-93% identities with the human and mouse counterparts. Stable expression of either rat MT1 or MT2 in NIH3T3 cells resulted in high affinity 2-[(125)I]-iodomelatonin ((125)I-Mel) binding (K (d) = 73.2 +/- 9.0 and 73.7 +/- 2.9 pM, respectively), and exhibited a similar rank order of inhibition of specific (125)I-Mel binding by five ligands (2-iodomelatonin > melatonin > 6-hydroxymelatonin > luzindole > N-acetyl-5-hydroxytryptamine). RT-PCR analysis showed that MT1 is highly expressed in the hypothalamus, lung, kidney, adrenal gland, stomach, and ovary, while MT2 is highly expressed in the hippocampus, kidney, and ovary. We also performed multi-cell RT-PCR to examine the expression of mRNAs encoding MT1 and MT2 in adult GnRH neurons. MT1 was weakly expressed in male GnRH neurons, and was less expressed in the female neurons. MT2 expression was undetectable in GnRH neurons from either sex. This study delineates the gene structures, fundamental properties, and distribution of both rat melatonin receptor subtypes, and may offer opportunities to assess the physiological significance of melatonin in rats.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1880-6546
1880-6562
DOI:10.1007/s12576-008-0003-9