Enhanced depression detection from speech using Quantum Whale Optimization Algorithm for feature selection

There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectra...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 150; p. 106122
Main Authors Kaur, Baljeet, Rathi, Swati, Agrawal, R.K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2022
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There is an urgent need to detect depression using a non-intrusive approach that is reliable and accurate. In this paper, a simple and efficient unimodal depression detection approach based on speech is proposed, which is non-invasive, cost-effective and computationally inexpensive. A set of spectral, temporal and spectro-temporal features is derived from the speech signal of healthy and depressed subjects. To select a minimal subset of the relevant and non-redundant speech features to detect depression, a two-phase approach based on the nature-inspired wrapper-based feature selection Quantum-based Whale Optimization Algorithm (QWOA) is proposed. Experiments are performed on the publicly available Distress Analysis Interview Corpus Wizard-of-Oz (DAICWOZ) dataset and compared with three established univariate filtering techniques for feature selection and four well-known evolutionary algorithms. The proposed model outperforms all the univariate filter feature selection techniques and the evolutionary algorithms. It has low computational complexity in comparison to traditional wrapper-based evolutionary methods. The performance of the proposed approach is superior in comparison to existing unimodal and multimodal automated depression detection models. The combination of spectral, temporal and spectro-temporal speech features gave the best result with the LDA classifier. The performance achieved with the proposed approach, in terms of F1-score for the depressed class and the non-depressed class and error is 0.846, 0.932 and 0.094 respectively. Statistical tests demonstrate that the acoustic features selected using the proposed approach are non-redundant and discriminatory. Statistical tests also establish that the performance of the proposed approach is significantly better than that of the traditional wrapper-based evolutionary methods. •Non-invasive low-complexity two-phase speech-based depression detection system.•Proposed two-phase approach involving QWOA gives high performance.•Spectral temporal and spectro-temporal features investigated extensively.•Selected speech features by the method are relevant and statistically significant.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2022.106122