Three-Dimensional Microstructures and Tensile Properties of Pure Iron During Equal Channel Angular Pressing

Commercial pure iron billets having diameter of 60 mm and length of 180 mm were subjected to equal channel angular pressing(ECAP) at 350 ℃ for 1 to 4 passes via route Bc.Microstructural evolutions on three planes(X,Y,Z planes) were characterized by optical microscopy and transmission electron micros...

Full description

Saved in:
Bibliographic Details
Published inJournal of iron and steel research, international Vol. 18; no. 12; pp. 40 - 44
Main Authors YANG, Gang, YANG, Mu-xin, LIU, Zheng-dong, WANG, Chang
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.12.2011
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Commercial pure iron billets having diameter of 60 mm and length of 180 mm were subjected to equal channel angular pressing(ECAP) at 350 ℃ for 1 to 4 passes via route Bc.Microstructural evolutions on three planes(X,Y,Z planes) were characterized by optical microscopy and transmission electron microscopy(TEM).It was found that after four passes an ultrafine microstructure could be formed on the X plane,but a band structure remained on the Z plane.Accordingly,the mechanical properties exhibited apparent dependence on the orientations.The strength in the x and y directions was higher than that in the z direction.The microstructural refinement and mechanical properties were discussed in terms of experimental results.
Bibliography:11-3678/TF
iron; ECAP; UFG; microstructure; mechanical property
Commercial pure iron billets having diameter of 60 mm and length of 180 mm were subjected to equal channel angular pressing(ECAP) at 350 ℃ for 1 to 4 passes via route Bc.Microstructural evolutions on three planes(X,Y,Z planes) were characterized by optical microscopy and transmission electron microscopy(TEM).It was found that after four passes an ultrafine microstructure could be formed on the X plane,but a band structure remained on the Z plane.Accordingly,the mechanical properties exhibited apparent dependence on the orientations.The strength in the x and y directions was higher than that in the z direction.The microstructural refinement and mechanical properties were discussed in terms of experimental results.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1006-706X
2210-3988
DOI:10.1016/S1006-706X(12)60007-7