Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats

Abstract Organisms are constantly subjected to stressful stimuli that affect numerous physiological processes and activate the hypothalamo-pituitary-adrenal (HPA) axis, increasing the release of glucocorticoids. Exposure to chronic stress is known to alter basic mechanisms of the stress response. Th...

Full description

Saved in:
Bibliographic Details
Published inPhysiology & behavior Vol. 90; no. 1; pp. 29 - 35
Main Authors Marin, Marcelo T, Cruz, Fabio C, Planeta, Cleopatra S
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 30.01.2007
New York, NY Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Organisms are constantly subjected to stressful stimuli that affect numerous physiological processes and activate the hypothalamo-pituitary-adrenal (HPA) axis, increasing the release of glucocorticoids. Exposure to chronic stress is known to alter basic mechanisms of the stress response. The purpose of the present study was to compare the effect of two different stress paradigms (chronic restraint or variable stress) on behavioral and corticosterone release to a subsequent exposure to stressors. Considering that the HPA axis might respond differently when it is challenged with a novel or a familiar stressor we investigated the changes in the corticosterone levels following the exposure to two stressors: restraint (familiar stress) or forced novelty (novel stress). The changes in the behavioral response were evaluated by measuring the locomotor response to a novel environment. In addition, we examined changes in body, adrenals, and thymus weights in response to the chronic paradigms. Our results showed that exposure to chronic variable stress increased basal plasma corticosterone levels and that both, chronic restraint and variable stresses, promote higher corticosterone levels in response to a novel environment, but not to a challenge restraint stress, as compared to the control (non-stressed) group. Exposure to chronic restraint leads to increased novelty-induced locomotor activity. Furthermore, only the exposure to variable stress reduced body weights. In conclusion, the present results provide additional evidence on how chronic stress affects the organism physiology and point to the importance of the chronic paradigm and challenge stress on the behavioral and hormonal adaptations induced by chronic stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9384
1873-507X
DOI:10.1016/j.physbeh.2006.08.021