Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China

Fine particulate matter (PM₂.₅) is the major air pollutant in Beijing, posing serious threats to human health. Land use regression (LUR) has been widely used in predicting spatiotemporal variation of ambient air-pollutant concentrations, though restricted to the European and North American context....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 22; no. 9; pp. 7045 - 7061
Main Authors Wu, Jiansheng, Li, Jiacheng, Peng, Jian, Li, Weifeng, Xu, Guang, Dong, Chengcheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.05.2015
Springer Berlin Heidelberg
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fine particulate matter (PM₂.₅) is the major air pollutant in Beijing, posing serious threats to human health. Land use regression (LUR) has been widely used in predicting spatiotemporal variation of ambient air-pollutant concentrations, though restricted to the European and North American context. We aimed to estimate spatiotemporal variations of PM₂.₅by building separate LUR models in Beijing. Hourly routine PM₂.₅measurements were collected at 35 sites from 4th March 2013 to 5th March 2014. Seventy-seven predictor variables were generated in GIS, including street network, land cover, population density, catering services distribution, bus stop density, intersection density, and others. Eight LUR models were developed on annual, seasonal, peak/non-peak, and incremental concentration subsets. The annual mean concentration across all sites is 90.7 μg/m³(SD = 13.7). PM₂.₅shows more temporal variation than spatial variation, indicating the necessity of building different models to capture spatiotemporal trends. The adjusted R²of these models range between 0.43 and 0.65. Most LUR models are driven by significant predictors including major road length, vegetation, and water land use. Annual outdoor exposure in Beijing is as high as 96.5 μg/m³. This is among the first LUR studies implemented in a seriously air-polluted Chinese context, which generally produce acceptable results and reliable spatial air-pollution maps. Apart from the models for winter and incremental concentration, LUR models are driven by similar variables, suggesting that the spatial variations of PM₂.₅remain steady for most of the time. Temporal variations are explained by the intercepts, and spatial variations in the measurements determine the strength of variable coefficients in our models.
Bibliography:http://dx.doi.org/10.1007/s11356-014-3893-5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-014-3893-5