Elevated rates of dietary generalization in eusocial lineages of the secondarily herbivorous bees

Within the Hymenoptera, bees are notable for their relationship with flowering plants, being almost entirely dependent on plant pollen and nectar. Though functionally herbivorous, as a result of their role as pollinators, bees have received comparatively little attention as models for insect herbivo...

Full description

Saved in:
Bibliographic Details
Published inBMC ecology and evolution Vol. 23; no. 1; p. 67
Main Authors Wood, T J, Müller, A, Praz, C, Michez, D
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.11.2023
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Within the Hymenoptera, bees are notable for their relationship with flowering plants, being almost entirely dependent on plant pollen and nectar. Though functionally herbivorous, as a result of their role as pollinators, bees have received comparatively little attention as models for insect herbivory. Bees often display dietary specialization, but quantitative comparison against other herbivorous insects has not previously been conducted. In the most comprehensive analysis to date for 860 bee species, dietary specialization amounted to 50.1% of studied species collecting pollen from between 1 and 2 botanical families with a relatively long tail of dietary generalists, with 11.1% of species collecting from more than 10 botanical families. This distribution deviated from the truncated Pareto distribution of dietary breadth seen in other herbivorous insect lineages. However, this deviation was predominantly due to eusocial bee lineages, which show a range of dietary breadths that conformed to a normal distribution, while solitary bees show a typical truncated distribution not strongly different from other herbivorous insects. We hypothesize that the relatively low level of dietary specialization in bees as a whole reflects the relaxation of the constraints typically observed in herbivorous insects with a comparatively reduced importance of plant chemistry and comparatively increased importance of phenology and foraging efficiency. The long flight periods of eusocial bees that are necessary to allow overlapping generations both allows and necessitates the use of multiple flowering resources, whereas solitary bees with short flight periods have more limited access to varied resources within a constrained activity period. Collectively, solitary bees show slightly lower specialization compared to other herbivorous insects, possibly due to their balanced relationship with plants, rather than direct antagonism such as seen in the direct consumption of plant tissues. An additional factor may be the mediocre diversity of bees at low latitudes combined with low levels of dietary specialization, whereas these areas typically display a high rate of specialization by herbivorous insects in general. Though the most important factors structuring dietary specialization in bees appear to differ from many other herbivorous insects, solitary bees show a surprisingly similar overall pattern of dietary specialization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2730-7182
2730-7182
DOI:10.1186/s12862-023-02175-1