Distribution of breakpoints induced by etoposide and X-rays along the CHO X chromosome

SORB (selected observed residual breakpoints) induced by ionizing radiation or endonucleases are often non-randomly distributed in mammalian chromosomes. However, the role played by chromatin structure in the localization of chromosome SORB is not well understood. Anti-topoisomerase drugs such as et...

Full description

Saved in:
Bibliographic Details
Published inCytogenetic and Genome Research Vol. 104; no. 1-4; pp. 182 - 187
Main Authors Martínez-López, W., Folle, G.A., Cassina, G., Méndez-Acuña, L., Di-Tomaso, M.V., Obe, G., Palitti, F.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:SORB (selected observed residual breakpoints) induced by ionizing radiation or endonucleases are often non-randomly distributed in mammalian chromosomes. However, the role played by chromatin structure in the localization of chromosome SORB is not well understood. Anti-topoisomerase drugs such as etoposide are potent clastogens and unlike endonucleases or ionizing radiation, induce DNA double-strand breaks (DSB) by an indirect mechanism. Topoisomerase II (Topo II) is a main component of the nuclear matrix and the chromosome scaffold. Since etoposide leads to DSB by influencing the activity of Topo II, this compound may be a useful tool to study the influence of the chromatin organization on the distribution of induced SORB in mammalian chromosomes. In the present work, we compared the distribution of SORB induced during S-phase by etoposide or X-rays in the short euchromatic and long heterochromatic arms of the CHO9 X chromosome. The S-phase stage (early, mid or late) at which CHO9 cells were exposed to etoposide or X-rays was marked by incorporation of BrdU during treatments and later determined by immunolabeling of metaphase chromosomes with an anti-BrdU FITC-coupled antibody. The majority of treated cells were in late S-phase during treatment either with etoposide or X-rays. SORB induced by etoposide mapped preferentially to Xq but random localization was observed for SORB produced by X-rays. Possible explanations for the uneven distribution of etoposide-induced breakpoints along Xq are discussed.   
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISBN:3805577672
9783805577670
ISSN:1424-8581
1424-859X
DOI:10.1159/000077486