Dynamic EEG-informed fMRI modeling of the pain matrix using 20-ms root mean square segments
Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory...
Saved in:
Published in | Human brain mapping Vol. 31; no. 11; pp. 1702 - 1712 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.11.2010
Wiley-Liss |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.20967 |
Cover
Loading…
Abstract | Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid‐cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain‐induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole‐brain coverage. In this study, we thought to investigate the spatio‐temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference‐free measure of event‐related EEG activity) in a time window 0–400 ms poststimulus were used to model trial‐to‐trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG‐derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG‐time windows suggests largely parallel signal processing in the bilateral operculo‐insular and mid‐cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid‐cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain‐induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole‐brain coverage. In this study, we thought to investigate the spatio‐temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference‐free measure of event‐related EEG activity) in a time window 0–400 ms poststimulus were used to model trial‐to‐trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG‐derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG‐time windows suggests largely parallel signal processing in the bilateral operculo‐insular and mid‐cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc. Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG.Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. Hum Brain Mapp, 2010. [copy 2010 Wiley-Liss, Inc. Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. |
Author | Musso, Francesco Schnitzler, Alfons Brinkmeyer, Juergen Wittsack, Hans-Jörg Mobascher, Arian Warbrick, Tracy Saleh, Andreas Winterer, Georg |
AuthorAffiliation | 5 Present address: Department of Psychiatry, Johannes Gutenberg University, Untere Zahlbacher Str. 8, 55131 Mainz, Germany 1 Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich‐Heine University Duesseldorf, Germany 4 Institute for Clinical Neurosciences and Medical Psychology, Heinrich‐Heine University Duesseldorf, Germany 3 Institute of Radiology, Heinrich‐Heine University Duesseldorf, Germany 2 Institute of Neurosciences and Biophysics, Helmholtz Research Center Juelich, Germany |
AuthorAffiliation_xml | – name: 4 Institute for Clinical Neurosciences and Medical Psychology, Heinrich‐Heine University Duesseldorf, Germany – name: 2 Institute of Neurosciences and Biophysics, Helmholtz Research Center Juelich, Germany – name: 5 Present address: Department of Psychiatry, Johannes Gutenberg University, Untere Zahlbacher Str. 8, 55131 Mainz, Germany – name: 1 Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich‐Heine University Duesseldorf, Germany – name: 3 Institute of Radiology, Heinrich‐Heine University Duesseldorf, Germany |
Author_xml | – sequence: 1 givenname: Juergen surname: Brinkmeyer fullname: Brinkmeyer, Juergen organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany – sequence: 2 givenname: Arian surname: Mobascher fullname: Mobascher, Arian email: arian.mobascher@arcor.de, mobascher_a@psychiatrie.klinik.uni-mainz.de organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany – sequence: 3 givenname: Tracy surname: Warbrick fullname: Warbrick, Tracy organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany – sequence: 4 givenname: Francesco surname: Musso fullname: Musso, Francesco organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany – sequence: 5 givenname: Hans-Jörg surname: Wittsack fullname: Wittsack, Hans-Jörg organization: Institute of Radiology, Heinrich-Heine University Duesseldorf, Germany – sequence: 6 givenname: Andreas surname: Saleh fullname: Saleh, Andreas organization: Institute of Radiology, Heinrich-Heine University Duesseldorf, Germany – sequence: 7 givenname: Alfons surname: Schnitzler fullname: Schnitzler, Alfons organization: Institute for Clinical Neurosciences and Medical Psychology, Heinrich-Heine University Duesseldorf, Germany – sequence: 8 givenname: Georg surname: Winterer fullname: Winterer, Georg organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23357170$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20162596$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhUeoiD5gwR9A3iDEYlp7ZvzaINESkkoNSDwXLCzH9iSGsZ3aM9D8ezwkDQ8JWNnW-c651_ceFwc-eFMUDxE8RRBWZ6uFO60gJ_ROcYQgpyVEvD4Y7wSXvKHosDhO6TOECGGI7hWHFUSkwpwcFZ9ebLx0VoHJZFpa34bojAbt_M0lcEGbzvolCC3oVwaspfXAyT7aGzCkUahg6RKIIfTAGelBuh5kNCCZpTO-T_eLu63sknmwO0-K9y8n7y5m5dXr6eXF86tSYdTQUlFVY23aBcemIZpz2qIFaxSHmtVEM6wJ15Jg2mpqZIsYIkznF2YQo5qg-qR4ts1dD4vcvcq1o-zEOlon40YEacXvircrsQxfBWEUQcxywJNdQAzXg0m9cDYp03XSmzAkwRgbp8vof0mKeV01mFaZfPRrU_tubkefgcc7QCYluzZKr2z6ydU1pojCzD3dciqGlKJp9wiCYly_yOsXP9af2bM_WGV72dsw_tt2_3J8s53Z_D1azM7nt45y67CpNzd7h4xfRFYpFh9fTcVbOG8-nJOZoPV3_CLOsw |
CitedBy_id | crossref_primary_10_1002_hbm_24791 crossref_primary_10_1016_j_neuroimage_2012_09_038 crossref_primary_10_1016_j_cortex_2018_08_024 crossref_primary_10_3389_fnins_2022_802239 crossref_primary_10_1093_brain_awr271 crossref_primary_10_1093_cercor_bhq097 crossref_primary_10_1016_j_neuroimage_2011_06_045 |
Cites_doi | 10.1016/j.neuroimage.2004.07.014 10.1016/j.clinph.2004.11.016 10.1523/JNEUROSCI.22-03-00970.2002 10.1016/0013-4694(93)90156-P 10.1152/jn.00912.2003 10.1073/pnas.0505508102 10.1016/0168-5597(96)95625-7 10.1006/nimg.2002.1132 10.1006/nimg.2001.0931 10.1016/j.neuroimage.2005.06.060 10.1016/j.ijpsycho.2007.05.016 10.1016/j.neuroimage.2004.09.032 10.1093/brain/awg032 10.1016/j.neuroimage.2009.05.082 10.1023/A:1011184814194 10.1097/00004691-199310000-00009 10.1002/mrm.1910330508 10.1016/j.ijpsycho.2008.12.018 10.1016/j.neuroimage.2007.01.022 10.1007/s11916-999-0043-8 10.1162/neco.1995.7.6.1129 10.1093/brain/awf137 10.1016/j.clinph.2004.10.004 10.1016/0013-4694(95)98475-N 10.1016/j.neuroimage.2007.01.044 10.1152/jn.91181.2008 10.1002/hbm.20826 10.1073/pnas.94.20.10979 10.1016/j.neuron.2007.07.012 10.1016/j.neuroimage.2008.12.051 10.1073/pnas.182272899 10.1016/j.neuroimage.2008.04.244 10.1016/j.ijpsycho.2007.04.010 10.1152/jn.00260.2004 10.1016/j.pain.2004.04.009 10.1006/nimg.2000.0599 10.1038/jcbfm.1992.127 10.1016/S1388-2457(00)00527-7 10.1016/0013-4694(94)00259-N 10.1016/j.tics.2006.09.010 10.1016/j.neuroimage.2008.04.236 10.1016/j.neuroimage.2006.09.021 10.1006/nimg.1998.0361 10.1002/hbm.460010306 10.1016/j.clinph.2008.06.021 10.1016/j.neuron.2007.05.032 10.1162/jocn.2007.19.7.1081 10.1002/hbm.460030103 10.1152/jn.1998.79.4.2231 10.1054/jpai.2002.126788 10.1523/JNEUROSCI.3286-05.2005 10.1002/hbm.10062 10.1523/JNEUROSCI.2934-07.2008 10.1016/j.neucli.2003.10.008 10.1016/0013-4694(95)98476-O 10.1002/hbm.20289 10.1016/j.neuroimage.2008.09.004 10.1016/j.ejpain.2004.11.001 10.1152/jn.1999.81.6.3100 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. 2015 INIST-CNRS 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: 2015 INIST-CNRS – notice: 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1002/hbm.20967 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Dynamic EEG‐Informed fMRI Modeling |
EISSN | 1097-0193 |
EndPage | 1712 |
ExternalDocumentID | PMC6871058 20162596 23357170 10_1002_hbm_20967 HBM20967 ark_67375_WNG_S0M4VB6H_7 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Heinrich‐Heine University, Duesseldorf |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c5147-c7c35defb95e46d997f1b84c90d836d85d69da657fd7eaf18168d57f580513613 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 13:58:37 EDT 2025 Fri Sep 05 08:04:09 EDT 2025 Fri Sep 05 09:44:54 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Mon Jul 21 09:12:53 EDT 2025 Tue Jul 01 04:25:57 EDT 2025 Thu Apr 24 22:53:41 EDT 2025 Wed Jan 22 16:24:58 EST 2025 Wed Oct 30 09:46:20 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Nervous system diseases laser-evoked potentials Square root Radiodiagnosis Electrophysiology root mean square Electroencephalography Nuclear magnetic resonance imaging Modeling Pain Evoked potential Laser functional magnetic resonance imaging Functional imaging |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5147-c7c35defb95e46d997f1b84c90d836d85d69da657fd7eaf18168d57f580513613 |
Notes | ark:/67375/WNG-S0M4VB6H-7 Heinrich-Heine University, Duesseldorf ArticleID:HBM20967 istex:AC0E7AAA8B0B1B6ED201A4F504E0709075BDC063 Juergen Brinkmeyer and Arian Mobascher contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20967?download=true |
PMID | 20162596 |
PQID | 759324572 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871058 proquest_miscellaneous_888096787 proquest_miscellaneous_759324572 pubmed_primary_20162596 pascalfrancis_primary_23357170 crossref_primary_10_1002_hbm_20967 crossref_citationtrail_10_1002_hbm_20967 wiley_primary_10_1002_hbm_20967_HBM20967 istex_primary_ark_67375_WNG_S0M4VB6H_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2010 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: November 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
References | Jenkinson M, Bannister P, Brady J, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841. Debener S, Ullsperger M, Siegel M, Engel AK ( 2006): Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10: 558-563. Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pélégrini-Issac M, Lina JM, Benali H ( 2007): Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 36: 69-87. Büchel C, Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C ( 2002): Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: A parametric single-trial laser functional magnetic resonance study. J Neurosci 22: 970-976. Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2005): Assessing the spatiotemporal evolution of neuronal activation with single trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102: 17798-17803. Baudena P, Halgren E, Heit G, Clarke JM ( 1995): Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94: 251-264. Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD ( 2008): Joint independent component analysis for simultaneous EEG-fMRI: Principle and simulation. Int J Psychophysiol 67: 212-221. Smith S ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155. Perchet C, Godinho F, Mazza S, Frot M, Legrain V, Magnin M, Garcia-Larrea L ( 2008): Evoked potentials to nociceptive stimuli delivered by CO2 or Nd:YAP lasers. Clin Neurophysiol 119: 2615-2622. Ploner M, Schmitz F, Freund HJ, Schnitzler A ( 1999): Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100-3104. Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C, Büchel C ( 2002): Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal cortex, insula and somatosensory cortex: A single-trial fMRI study. Brain 2002: 1326-1336. Bell AJ, Sejnowski TJ ( 1995): An information-maximation approach to blind separation and blind deconvolution. Neural Comput 7: 1129-1159. Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004a): Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110: 318-328. Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004b): Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734-2746. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engels AK ( 2005): Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25: 11730-11737. Behrens T, Woolrich MW, Smith S ( 2003): Multi-Testing Using a Fully Subject Null Hypothesis Bayesian Framework: Theory. New York: Human Brain Mapping Meeting. Winterer G, Mulert C, Mientus S, Gallinat J, Schlattmann P, Dorn H, Herrmann WM ( 2001): P300 and LORETA: Comparison of normal subjects and schizophrenic patients. Brain Topogr 13: 299-313. Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, Chauvel P, Musolino A ( 1995a): Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94: 191-220. Ploner M, Pollok B, Schnitzler A ( 2004): Pain facilitates tactile processing in human somatosensory cortices. J Neurophysiol 92: 1825-1829. Allen P, Polizzi G, Krakow K, Fish DR, Lemieux L ( 1998): Identification of EEG Events in the MR scanner: The problem of pulse artifact and a method for its subtraction. NeuroImage 8: 229-239. Dowman R, Darcey T, Barkan H, Thadani V, Roberts D ( 2007): Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. NeuroImage 34: 743-763. Eichele T, Calhoun V, Moosmann M, Specht K, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2008): Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol 67: 222-234. Worsley KJ, Evans AC, Marrett S, Neelin P ( 1992): A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900-918. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC ( 1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn Reson Med 33: 636-647. de Munck JC, Goncalves SI, Huijboom L, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2007): The hemodynamic response of the alpha rhythm: an EEG/fMRI study. NeuroImage 35: 1142-1151. Garcia-Larrea L, Frot M, Valeriani M ( 2003): Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiol Clin 33: 279-292. Kakigi R, Inui K, Tamura Y ( 2005): Electrophysiological studies on human pain perception. Clin Neurophysiol 166: 743-763. Rorden C, Karnath HO, Bonilha L ( 2007): Improving lesion-symptom mapping. J Cogn Neurosci 19: 1081-1088. Eichele T, Calhoun VD, Debener S ( 2009): Mining EEG-fMRI using independent component analysis. Int J Psychophysiol 73: 53-61. Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G ( 2005): Laser-evoked potentials: Normative values. Clin Neurophysiol 116: 821-826. de Munck JC, Goncalves SI, Faes TJ, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2008): A study of the brain's resting state based on alpha band power, heart rate and fMRI. NeuroImage 42: 112-121. Ploner M, Schoffelen JM, Schnitzler A, Gross J ( 2009): Functional integration within the human pain system as revealed by Granger causality. Hum Brain Mapp 30: 4025-4032. Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelation in univariate linear modelling of fMRI data. NeuroImage 14: 1370-1386. Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Stoermer R, Saleh A, Schnitzler A, Winterer G ( 2009b): Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimulation-A fMRI/EEG study. NeuroImage 44: 1081-1092. Frot M, Mauguière F ( 2003): Dual representation of pain in the operculo-insular cortex in humans. Brain 126: 438-450. Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Saleh A, Schnitzler A, Winterer G ( 2009a): Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures. NeuroImage 45: 917-926. Lenz FA, Rios M, Zirh A, Chau D, Krauss G, Lesser RP ( 1998): Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79: 2231-2234. Rios M, Treede R, Lee J, Lenz FA ( 1999): Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex. Curr Rev Pain 3: 256-264. Tracey I, Mantyh PW ( 2007): The cerebral signature for pain perception and its modulation. Neuron 55: 377-391. Frot M, Mauguière F, Magnin F, Garcia-Larrea L ( 2008): Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in humans. J Neurosci 28: 944-952. Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A ( 1995b): Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94: 229-250. Benar C-G, Schön D, Grimault S, Nazarian B, Burle B, Roth M, Badier J-M, Marquis P, Liegeois-Chauvel C, Anton J-C ( 2007): Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Bain Mapp 28: 602-613. Derbyshire SWG, Nichols TE, Firestone L, Townsend DW, Jones AKP ( 2002): Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation. J Pain 3: 401-411. Makeig S, Bell AJ, Jung T-P, Ghahremani D, Sejnowski TJ ( 1997): Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94: 10979-10984. Bingel U, Rose M, Gläscher J, Büchel C ( 2007): fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron 55: 157-167. Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL ( 1993): Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87: 417-420. Mouraux A, Iannetti GD ( 2009): Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol 101: 3258-3269. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK ( 2005): Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463-484. Allen P, Josephs O, Turner R ( 2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 1: 230-239. Oostenveld R, Praamstra P ( 2001): The five percent electrode system for high resolution EEG and ERP measurement. Clin Neurophysiol 112: 713-719. Valeriani M, Rambaud L, Mauguiere F ( 1996): Scalp topography and dipolar source modelling of potentials evoked by CO2 laser stimulation of the hand. Electroenceph Clin Neurophysiol 100: 343-353. Forss N, Raji TT, Seppä M, Hari R ( 2005): Common cortical network for first and second pain. NeuroImage 24: 132-142. Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller HJ, Hegerl U, Pogarell O, Jäger L ( 2008): Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42: 158-168. Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM ( 2004): Mapping human brain function with MEG and EEG: Methods and validation. NeuroI 2004b; 91 2002; 17 2009; 47 2009b; 44 2004; 23 1995; 33 2002; 99 1996; 100 2000; 1 1999; 81 2005; 28 2007; 34 1992; 12 2007; 35 2007; 36 2005; 24 2005; 25 2007; 28 2002; 2002 1997; 94 2001 2005; 102 2008; 28 2008; 119 2008; 67 2003; 126 2001; 13 2001; 14 2007; 19 1995; 94 2006; 10 1993; 87 1995b; 94 2005; 116 2002; 3 2004a; 110 1999; 3 2003 2007; 55 1995; 3 2003; 33 1995; 7 1995a; 94 2001; 112 2009; 30 2009; 73 2004; 92 2005; 166 2005; 9 1993; 10 2002; 22 2009; 101 2008; 42 2009a; 45 1994; 1 1998; 8 1998; 79 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Behrens T (e_1_2_6_6_1) 2003 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 Jensen MP (e_1_2_6_35_1) 2001 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Eichele T, Calhoun V, Moosmann M, Specht K, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2008): Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol 67: 222-234. – reference: Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JCW, Zambreanu L, Vennart W, Matthews PM, Tracey I ( 2005): Simultaneous recording of laser-evoked potentials and continuous, high-field functional magnetic resonance imaging in humans. NeuroImage 28: 708-719. – reference: Bingel U, Rose M, Gläscher J, Büchel C ( 2007): fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron 55: 157-167. – reference: Bell AJ, Sejnowski TJ ( 1995): An information-maximation approach to blind separation and blind deconvolution. Neural Comput 7: 1129-1159. – reference: Perchet C, Godinho F, Mazza S, Frot M, Legrain V, Magnin M, Garcia-Larrea L ( 2008): Evoked potentials to nociceptive stimuli delivered by CO2 or Nd:YAP lasers. Clin Neurophysiol 119: 2615-2622. – reference: Valeriani M, Rambaud L, Mauguiere F ( 1996): Scalp topography and dipolar source modelling of potentials evoked by CO2 laser stimulation of the hand. Electroenceph Clin Neurophysiol 100: 343-353. – reference: de Munck JC, Goncalves SI, Huijboom L, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2007): The hemodynamic response of the alpha rhythm: an EEG/fMRI study. NeuroImage 35: 1142-1151. – reference: Makeig S, Bell AJ, Jung T-P, Ghahremani D, Sejnowski TJ ( 1997): Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94: 10979-10984. – reference: Huang-Hellinger FR, Breiter HC, McCormack G, Cohen MS, Kwong KK, Sutton JP, Savoy RL, Weisskoff RM, Davis TL, Baker JR, Belliveau JW, Rosen BR ( 1995): Simultaneous functional magnetic resonance imaging and electrophysiological recording. Hum Brain Mapp 3: 13-23. – reference: Jenkinson M, Bannister P, Brady J, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841. – reference: Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C, Büchel C ( 2002): Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal cortex, insula and somatosensory cortex: A single-trial fMRI study. Brain 2002: 1326-1336. – reference: Ploner M, Pollok B, Schnitzler A ( 2004): Pain facilitates tactile processing in human somatosensory cortices. J Neurophysiol 92: 1825-1829. – reference: Mouraux A, Iannetti GD ( 2009): Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol 101: 3258-3269. – reference: Allen P, Josephs O, Turner R ( 2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 1: 230-239. – reference: Winterer G, Mulert C, Mientus S, Gallinat J, Schlattmann P, Dorn H, Herrmann WM ( 2001): P300 and LORETA: Comparison of normal subjects and schizophrenic patients. Brain Topogr 13: 299-313. – reference: Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller HJ, Hegerl U, Pogarell O, Jäger L ( 2008): Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42: 158-168. – reference: Dowman R, Darcey T, Barkan H, Thadani V, Roberts D ( 2007): Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. NeuroImage 34: 743-763. – reference: Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G ( 2005): Laser-evoked potentials: Normative values. Clin Neurophysiol 116: 821-826. – reference: Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2005): Assessing the spatiotemporal evolution of neuronal activation with single trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102: 17798-17803. – reference: Debener S, Ullsperger M, Siegel M, Engel AK ( 2006): Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10: 558-563. – reference: Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC ( 1994): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1: 214-220. – reference: Warbrick T, Mobascher A, Brinkmeyer J, Musso F, Richter N, Stoecker T, Fink GR, Shah NJ, Winterer G ( 2009): Single-trial P3 amplitude and latency informed event-related fMRI models yield different BOLD response patterns to a target detection task. NeuroImage 47: 1532-1544. – reference: Eichele T, Calhoun VD, Debener S ( 2009): Mining EEG-fMRI using independent component analysis. Int J Psychophysiol 73: 53-61. – reference: Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A ( 1995b): Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94: 229-250. – reference: Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL ( 1993): Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87: 417-420. – reference: Worsley KJ, Evans AC, Marrett S, Neelin P ( 1992): A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900-918. – reference: Tarkka IM, Treede RD ( 1993): Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10: 513-519. – reference: Benar C-G, Schön D, Grimault S, Nazarian B, Burle B, Roth M, Badier J-M, Marquis P, Liegeois-Chauvel C, Anton J-C ( 2007): Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Bain Mapp 28: 602-613. – reference: Ploner M, Schoffelen JM, Schnitzler A, Gross J ( 2009): Functional integration within the human pain system as revealed by Granger causality. Hum Brain Mapp 30: 4025-4032. – reference: Kakigi R, Inui K, Tamura Y ( 2005): Electrophysiological studies on human pain perception. Clin Neurophysiol 166: 743-763. – reference: Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM ( 2004): Mapping human brain function with MEG and EEG: Methods and validation. NeuroImage 23: S289-S299. – reference: Lenz FA, Rios M, Zirh A, Chau D, Krauss G, Lesser RP ( 1998): Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79: 2231-2234. – reference: Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004a): Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110: 318-328. – reference: Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, Chauvel P, Musolino A ( 1995a): Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94: 191-220. – reference: Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Stoermer R, Saleh A, Schnitzler A, Winterer G ( 2009b): Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimulation-A fMRI/EEG study. NeuroImage 44: 1081-1092. – reference: Oostenveld R, Praamstra P ( 2001): The five percent electrode system for high resolution EEG and ERP measurement. Clin Neurophysiol 112: 713-719. – reference: Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD ( 2008): Joint independent component analysis for simultaneous EEG-fMRI: Principle and simulation. Int J Psychophysiol 67: 212-221. – reference: Frot M, Mauguière F ( 2003): Dual representation of pain in the operculo-insular cortex in humans. Brain 126: 438-450. – reference: Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pélégrini-Issac M, Lina JM, Benali H ( 2007): Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 36: 69-87. – reference: Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Saleh A, Schnitzler A, Winterer G ( 2009a): Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures. NeuroImage 45: 917-926. – reference: Ploner M, Schmitz F, Freund HJ, Schnitzler A ( 1999): Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100-3104. – reference: Rorden C, Karnath HO, Bonilha L ( 2007): Improving lesion-symptom mapping. J Cogn Neurosci 19: 1081-1088. – reference: Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engels AK ( 2005): Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25: 11730-11737. – reference: Behrens T, Woolrich MW, Smith S ( 2003): Multi-Testing Using a Fully Subject Null Hypothesis Bayesian Framework: Theory. New York: Human Brain Mapping Meeting. – reference: Forss N, Raji TT, Seppä M, Hari R ( 2005): Common cortical network for first and second pain. NeuroImage 24: 132-142. – reference: Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004b): Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734-2746. – reference: Ploner M, Gross J, Timmermann L, Schnitzler A ( 2002): Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci USA 99: 12444-12448. – reference: Smith S ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155. – reference: de Munck JC, Goncalves SI, Faes TJ, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2008): A study of the brain's resting state based on alpha band power, heart rate and fMRI. NeuroImage 42: 112-121. – reference: Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC ( 1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn Reson Med 33: 636-647. – reference: Allen P, Polizzi G, Krakow K, Fish DR, Lemieux L ( 1998): Identification of EEG Events in the MR scanner: The problem of pulse artifact and a method for its subtraction. NeuroImage 8: 229-239. – reference: Büchel C, Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C ( 2002): Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: A parametric single-trial laser functional magnetic resonance study. J Neurosci 22: 970-976. – reference: Derbyshire SWG, Nichols TE, Firestone L, Townsend DW, Jones AKP ( 2002): Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation. J Pain 3: 401-411. – reference: Apkarian AV, Bushnell MC, Treede RD, Zubieta JK ( 2005): Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463-484. – reference: Baudena P, Halgren E, Heit G, Clarke JM ( 1995): Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94: 251-264. – reference: Tracey I, Mantyh PW ( 2007): The cerebral signature for pain perception and its modulation. Neuron 55: 377-391. – reference: Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelation in univariate linear modelling of fMRI data. NeuroImage 14: 1370-1386. – reference: Frot M, Mauguière F, Magnin F, Garcia-Larrea L ( 2008): Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in humans. J Neurosci 28: 944-952. – reference: Rios M, Treede R, Lee J, Lenz FA ( 1999): Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex. Curr Rev Pain 3: 256-264. – reference: Garcia-Larrea L, Frot M, Valeriani M ( 2003): Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiol Clin 33: 279-292. – volume: 67 start-page: 222 year: 2008 end-page: 234 article-title: Unmixing concurrent EEG‐fMRI with parallel independent component analysis publication-title: Int J Psychophysiol – volume: 28 start-page: 602 year: 2007 end-page: 613 article-title: Single‐trial analysis of oddball event‐related potentials in simultaneous EEG‐fMRI publication-title: Hum Bain Mapp – volume: 3 start-page: 13 year: 1995 end-page: 23 article-title: Simultaneous functional magnetic resonance imaging and electrophysiological recording publication-title: Hum Brain Mapp – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 13 start-page: 299 year: 2001 end-page: 313 article-title: P300 and LORETA: Comparison of normal subjects and schizophrenic patients publication-title: Brain Topogr – volume: 36 start-page: 69 year: 2007 end-page: 87 article-title: Symmetrical event‐related EEG/fMRI information fusion in a variational Bayesian framework publication-title: Neuroimage – volume: 102 start-page: 17798 year: 2005 end-page: 17803 article-title: Assessing the spatiotemporal evolution of neuronal activation with single trial event‐related potentials and functional MRI publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 900 year: 1992 end-page: 918 article-title: A three‐dimensional statistical analysis for CBF activation studies in human brain publication-title: J Cereb Blood Flow Metab – volume: 119 start-page: 2615 year: 2008 end-page: 2622 article-title: Evoked potentials to nociceptive stimuli delivered by CO or Nd:YAP lasers publication-title: Clin Neurophysiol – volume: 94 start-page: 191 year: 1995a end-page: 220 article-title: Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe publication-title: Electroencephalogr Clin Neurophysiol – volume: 1 start-page: 230 year: 2000 end-page: 239 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: NeuroImage – volume: 9 start-page: 463 year: 2005 end-page: 484 article-title: Human brain mechanisms of pain perception and regulation in health and disease publication-title: Eur J Pain – volume: 2002 start-page: 1326 year: 2002 end-page: 1336 article-title: Painful stimuli evoke different stimulus‐response functions in the amygdala, prefrontal cortex, insula and somatosensory cortex: A single‐trial fMRI study publication-title: Brain – volume: 24 start-page: 132 year: 2005 end-page: 142 article-title: Common cortical network for first and second pain publication-title: NeuroImage – volume: 55 start-page: 377 year: 2007 end-page: 391 article-title: The cerebral signature for pain perception and its modulation publication-title: Neuron – volume: 91 start-page: 2734 year: 2004b end-page: 2746 article-title: Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans publication-title: J Neurophysiol – volume: 28 start-page: 944 year: 2008 end-page: 952 article-title: Parallel processing of nociceptive A‐δ inputs in SII and midcingulate cortex in humans publication-title: J Neurosci – volume: 23 start-page: S289 year: 2004 end-page: S299 article-title: Mapping human brain function with MEG and EEG: Methods and validation publication-title: NeuroImage – volume: 99 start-page: 12444 year: 2002 end-page: 12448 article-title: Cortical representation of first and second pain sensation in humans publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 212 year: 2008 end-page: 221 article-title: Joint independent component analysis for simultaneous EEG‐fMRI: Principle and simulation publication-title: Int J Psychophysiol – volume: 10 start-page: 558 year: 2006 end-page: 563 article-title: Single‐trial EEG‐fMRI reveals the dynamics of cognitive function publication-title: Trends Cogn Sci – volume: 33 start-page: 636 year: 1995 end-page: 647 article-title: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster‐size threshold publication-title: Magn Reson Med – volume: 110 start-page: 318 year: 2004a end-page: 328 article-title: Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity publication-title: Pain – volume: 73 start-page: 53 year: 2009 end-page: 61 article-title: Mining EEG‐fMRI using independent component analysis publication-title: Int J Psychophysiol – start-page: 15 year: 2001 end-page: 34 – volume: 28 start-page: 708 year: 2005 end-page: 719 article-title: Simultaneous recording of laser‐evoked potentials and continuous, high‐field functional magnetic resonance imaging in humans publication-title: NeuroImage – volume: 94 start-page: 10979 year: 1997 end-page: 10984 article-title: Blind separation of auditory event‐related brain responses into independent components publication-title: Proc Natl Acad Sci USA – volume: 166 start-page: 743 year: 2005 end-page: 763 article-title: Electrophysiological studies on human pain perception publication-title: Clin Neurophysiol – volume: 3 start-page: 401 year: 2002 end-page: 411 article-title: Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation publication-title: J Pain – volume: 25 start-page: 11730 year: 2005 end-page: 11737 article-title: Trial‐by‐trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring publication-title: J Neurosci – volume: 22 start-page: 970 year: 2002 end-page: 976 article-title: Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: A parametric single‐trial laser functional magnetic resonance study publication-title: J Neurosci – volume: 79 start-page: 2231 year: 1998 end-page: 2234 article-title: Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus publication-title: J Neurophysiol – volume: 42 start-page: 158 year: 2008 end-page: 168 article-title: Single‐trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making publication-title: NeuroImage – volume: 34 start-page: 743 year: 2007 end-page: 763 article-title: Human intracranially‐recorded cortical responses evoked by painful electrical stimulation of the sural nerve publication-title: NeuroImage – volume: 87 start-page: 417 year: 1993 end-page: 420 article-title: Monitoring the patient's EEG during echo planar MRI publication-title: Electroencephalogr Clin Neurophysiol – volume: 3 start-page: 256 year: 1999 end-page: 264 article-title: Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex publication-title: Curr Rev Pain – volume: 101 start-page: 3258 year: 2009 end-page: 3269 article-title: Nociceptive laser‐evoked brain potentials do not reflect nociceptive‐specific neural activity publication-title: J Neurophysiol – year: 2003 – volume: 126 start-page: 438 year: 2003 end-page: 450 article-title: Dual representation of pain in the operculo‐insular cortex in humans publication-title: Brain – volume: 112 start-page: 713 year: 2001 end-page: 719 article-title: The five percent electrode system for high resolution EEG and ERP measurement publication-title: Clin Neurophysiol – volume: 19 start-page: 1081 year: 2007 end-page: 1088 article-title: Improving lesion‐symptom mapping publication-title: J Cogn Neurosci – volume: 1 start-page: 214 year: 1994 end-page: 220 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum Brain Mapp – volume: 42 start-page: 112 year: 2008 end-page: 121 article-title: A study of the brain's resting state based on alpha band power, heart rate and fMRI publication-title: NeuroImage – volume: 30 start-page: 4025 year: 2009 end-page: 4032 article-title: Functional integration within the human pain system as revealed by Granger causality publication-title: Hum Brain Mapp – volume: 116 start-page: 821 year: 2005 end-page: 826 article-title: Laser‐evoked potentials: Normative values publication-title: Clin Neurophysiol – volume: 10 start-page: 513 year: 1993 end-page: 519 article-title: Equivalent electrical source analysis of pain‐related somatosensory evoked potentials elicited by a CO2 laser publication-title: J Clin Neurophysiol – volume: 7 start-page: 1129 year: 1995 end-page: 1159 article-title: An information‐maximation approach to blind separation and blind deconvolution publication-title: Neural Comput – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – volume: 35 start-page: 1142 year: 2007 end-page: 1151 article-title: The hemodynamic response of the alpha rhythm: an EEG/fMRI study publication-title: NeuroImage – volume: 33 start-page: 279 year: 2003 end-page: 292 article-title: Brain generators of laser‐evoked potentials: From dipoles to functional significance publication-title: Neurophysiol Clin – volume: 44 start-page: 1081 year: 2009b end-page: 1092 article-title: Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimulation—A fMRI/EEG study publication-title: NeuroImage – volume: 55 start-page: 157 year: 2007 end-page: 167 article-title: fMRI reveals how pain modulates visual object processing in the ventral visual stream publication-title: Neuron – volume: 81 start-page: 3100 year: 1999 end-page: 3104 article-title: Parallel activation of primary and secondary somatosensory cortices in human pain processing publication-title: J Neurophysiol – volume: 100 start-page: 343 year: 1996 end-page: 353 article-title: Scalp topography and dipolar source modelling of potentials evoked by CO laser stimulation of the hand publication-title: Electroenceph Clin Neurophysiol – volume: 92 start-page: 1825 year: 2004 end-page: 1829 article-title: Pain facilitates tactile processing in human somatosensory cortices publication-title: J Neurophysiol – volume: 94 start-page: 229 year: 1995b end-page: 250 article-title: Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe publication-title: Electroencephalogr Clin Neurophysiol – volume: 45 start-page: 917 year: 2009a end-page: 926 article-title: Laser‐evoked potential P2 single‐trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures publication-title: NeuroImage – volume: 14 start-page: 1370 year: 2001 end-page: 1386 article-title: Temporal autocorrelation in univariate linear modelling of fMRI data publication-title: NeuroImage – volume: 47 start-page: 1532 year: 2009 end-page: 1544 article-title: Single‐trial P3 amplitude and latency informed event‐related fMRI models yield different BOLD response patterns to a target detection task publication-title: NeuroImage – volume: 8 start-page: 229 year: 1998 end-page: 239 article-title: Identification of EEG Events in the MR scanner: The problem of pulse artifact and a method for its subtraction publication-title: NeuroImage – volume: 94 start-page: 251 year: 1995 end-page: 264 article-title: Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex publication-title: Electroencephalogr Clin Neurophysiol – ident: e_1_2_6_12_1 doi: 10.1016/j.neuroimage.2004.07.014 – ident: e_1_2_6_36_1 doi: 10.1016/j.clinph.2004.11.016 – ident: e_1_2_6_11_1 doi: 10.1523/JNEUROSCI.22-03-00970.2002 – ident: e_1_2_6_33_1 doi: 10.1016/0013-4694(93)90156-P – volume-title: Multi‐Testing Using a Fully Subject Null Hypothesis Bayesian Framework: Theory year: 2003 ident: e_1_2_6_6_1 – ident: e_1_2_6_45_1 doi: 10.1152/jn.00912.2003 – ident: e_1_2_6_20_1 doi: 10.1073/pnas.0505508102 – ident: e_1_2_6_58_1 doi: 10.1016/0168-5597(96)95625-7 – ident: e_1_2_6_34_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_6_61_1 doi: 10.1006/nimg.2001.0931 – ident: e_1_2_6_32_1 doi: 10.1016/j.neuroimage.2005.06.060 – ident: e_1_2_6_41_1 doi: 10.1016/j.ijpsycho.2007.05.016 – ident: e_1_2_6_24_1 doi: 10.1016/j.neuroimage.2004.09.032 – ident: e_1_2_6_26_1 doi: 10.1093/brain/awg032 – ident: e_1_2_6_59_1 doi: 10.1016/j.neuroimage.2009.05.082 – ident: e_1_2_6_60_1 doi: 10.1023/A:1011184814194 – ident: e_1_2_6_55_1 doi: 10.1097/00004691-199310000-00009 – ident: e_1_2_6_23_1 doi: 10.1002/mrm.1910330508 – ident: e_1_2_6_22_1 doi: 10.1016/j.ijpsycho.2008.12.018 – ident: e_1_2_6_16_1 doi: 10.1016/j.neuroimage.2007.01.022 – ident: e_1_2_6_52_1 doi: 10.1007/s11916-999-0043-8 – ident: e_1_2_6_7_1 doi: 10.1162/neco.1995.7.6.1129 – ident: e_1_2_6_10_1 doi: 10.1093/brain/awf137 – ident: e_1_2_6_57_1 doi: 10.1016/j.clinph.2004.10.004 – ident: e_1_2_6_30_1 doi: 10.1016/0013-4694(95)98475-N – ident: e_1_2_6_13_1 doi: 10.1016/j.neuroimage.2007.01.044 – ident: e_1_2_6_42_1 doi: 10.1152/jn.91181.2008 – ident: e_1_2_6_51_1 doi: 10.1002/hbm.20826 – ident: e_1_2_6_38_1 doi: 10.1073/pnas.94.20.10979 – ident: e_1_2_6_56_1 doi: 10.1016/j.neuron.2007.07.012 – ident: e_1_2_6_39_1 doi: 10.1016/j.neuroimage.2008.12.051 – ident: e_1_2_6_49_1 doi: 10.1073/pnas.182272899 – ident: e_1_2_6_17_1 doi: 10.1016/j.neuroimage.2008.04.244 – ident: e_1_2_6_21_1 doi: 10.1016/j.ijpsycho.2007.04.010 – ident: e_1_2_6_50_1 doi: 10.1152/jn.00260.2004 – ident: e_1_2_6_44_1 doi: 10.1016/j.pain.2004.04.009 – ident: e_1_2_6_3_1 doi: 10.1006/nimg.2000.0599 – ident: e_1_2_6_62_1 doi: 10.1038/jcbfm.1992.127 – ident: e_1_2_6_46_1 doi: 10.1016/S1388-2457(00)00527-7 – ident: e_1_2_6_29_1 doi: 10.1016/0013-4694(94)00259-N – ident: e_1_2_6_15_1 doi: 10.1016/j.tics.2006.09.010 – ident: e_1_2_6_43_1 doi: 10.1016/j.neuroimage.2008.04.236 – ident: e_1_2_6_19_1 doi: 10.1016/j.neuroimage.2006.09.021 – ident: e_1_2_6_2_1 doi: 10.1006/nimg.1998.0361 – ident: e_1_2_6_25_1 doi: 10.1002/hbm.460010306 – ident: e_1_2_6_47_1 doi: 10.1016/j.clinph.2008.06.021 – ident: e_1_2_6_9_1 doi: 10.1016/j.neuron.2007.05.032 – ident: e_1_2_6_53_1 doi: 10.1162/jocn.2007.19.7.1081 – ident: e_1_2_6_31_1 doi: 10.1002/hbm.460030103 – ident: e_1_2_6_37_1 doi: 10.1152/jn.1998.79.4.2231 – ident: e_1_2_6_18_1 doi: 10.1054/jpai.2002.126788 – ident: e_1_2_6_14_1 doi: 10.1523/JNEUROSCI.3286-05.2005 – start-page: 15 volume-title: Handbook of Pain Assessment year: 2001 ident: e_1_2_6_35_1 – ident: e_1_2_6_54_1 doi: 10.1002/hbm.10062 – ident: e_1_2_6_27_1 doi: 10.1523/JNEUROSCI.2934-07.2008 – ident: e_1_2_6_28_1 doi: 10.1016/j.neucli.2003.10.008 – ident: e_1_2_6_5_1 doi: 10.1016/0013-4694(95)98476-O – ident: e_1_2_6_8_1 doi: 10.1002/hbm.20289 – ident: e_1_2_6_40_1 doi: 10.1016/j.neuroimage.2008.09.004 – ident: e_1_2_6_4_1 doi: 10.1016/j.ejpain.2004.11.001 – ident: e_1_2_6_48_1 doi: 10.1152/jn.1999.81.6.3100 |
SSID | ssj0011501 |
Score | 2.0104516 |
Snippet | Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial... Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1702 |
SubjectTerms | Adult Biological and medical sciences Brain Mapping - methods Cerebral Cortex - physiopathology Electrodiagnosis. Electric activity recording electroencephalography Electroencephalography - methods Female functional magnetic resonance imaging Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) laser-evoked potentials Magnetic Resonance Imaging - methods Male Medical sciences Nervous system pain Pain - physiopathology Pain Perception - physiology Radiodiagnosis. Nmr imagery. Nmr spectrometry root mean square |
Title | Dynamic EEG-informed fMRI modeling of the pain matrix using 20-ms root mean square segments |
URI | https://api.istex.fr/ark:/67375/WNG-S0M4VB6H-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20967 https://www.ncbi.nlm.nih.gov/pubmed/20162596 https://www.proquest.com/docview/759324572 https://www.proquest.com/docview/888096787 https://pubmed.ncbi.nlm.nih.gov/PMC6871058 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIiEu_LRAt0BlIVRxSZtNYjsWpxa2XZDSQ6HQA5Ll37Yqm22bXalw4hF4Rp6Esb1JWWglxM1Rxkk8GdvfJDPfIPSilNS6zLBEssIlhc1IwjPNklQpJ5nj0gTGm2qPDg-Kd4fkcAG9anNhIj9E98HNz4ywXvsJLlWzeUUaeqx8IjmnPpPcx2p5QLTfUUd5oBOcLdhiEw4rcMsqlGabXc-5veiWV-ulj42UDajHxboW1wHPv-Mnf8e1YWPauYc-t0OK8SinG9OJ2tDf_mB7_M8x30d3Z4AVb0ULe4AWbL2ElrdqcNZHX_E6DiGk4dv8Erpdzf7ULyPxJpa6x4PB7s_vPyI_qzXYVftvcSi_A3smHjsMABSfyZMaj3yxgEvsA_GPcJZCp1GDAddP8MjKGjfnYMwWN_YoJOU9RAc7gw-vh8msmEOiAZOxRDOdE2Od4sQW1HDOXF-VheapKXNqSmIoN5IS5gyz0vV9PRADR6SEZSMH0PEILdbj2q4gzPtSeRq6nFtwT10pjWbU9nVKlYRW2UMv29cq9Izp3Bfc-CIiR3MmQI8i6LGHnneiZ5He4zqh9WAbnYS8OPXxcIyIT3u74n1aFR-36VCA4Nqc8XQdsjwn4DenPYRbaxIwjf2_GVnb8bQRjACQLgjLbhYpYamFpynhNo-j_V1dH4A7-LG0h9icZXYCnkR8_kx9chzIxCl4zCnxOguGd7MWxHC7Co3Vfxd9gu6EaIuQu_kULU4upvYZgLiJWguz9RcFo0Tg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFoufUBLtw9qVRXqJZBNYjuWeoGysLRkDxQKl8pyYhsQ3SwluxLtqT-hv7G_pGNnN3RbkKreEmWcx2TG_sYefwPwKlXM2EjzQPHEBomJaCCiggdhnlvFrVDaM95kPdY9SN4d0aMZeDPZC1PzQzQTbs4zfH_tHNxNSK9dsYae5G4nuWD8Fsy5it7OLTf3GvIoB3V8uIWDbCCwD57wCoXRWtN0ajSac4q9dNmRqkIF2bqyxXXQ8-8Myt-RrR-atu7Bp8lH1RkpZ6ujYb5afPuD7_F_v_o-3B1jVrJeG9kDmDHlAiyulxiv97-SFeKzSP30_ALczsaL9YsgN-tq96TT2f75_UdN0Wo0sdneDvEVeHDYJANLEIOSc3Vakr6rF3BJXC7-MYlCbNSvCEL7IekbVZLqC9qzIZU59vvyHsLBVmf_bTcY13MICoRlPCh4EVNtbC6oSZgWgtt2niaFCHUaM51SzYRWjHKruVG27UqCaDyjKfYcMeKORzBbDkrzGIhoq9wx0cXCYIRqU6ULzky7CFmu8ChtwevJf5XFmOzc1dz4LGua5kiiHqXXYwteNqLnNcPHdUIr3jgaCXVx5lLiOJWHvW35IcySjxusK1Fwecp6mgZRHFMMncMWkIk5SfRktzyjSjMYVZJTxNIJ5dHNIin2tvg2KT5mqTbAq_sjdsdQlrWAT5lmI-B4xKevlKcnnk-cYdAcUqczb3k3a0F2NzJ_8OTfRV_Ane5-tit3d3rvn8K8T77wWzmfwezwYmSeI6Yb5svedX8BFs1I-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28DNi4lMuwEJp4yZYm8U08bbRdB6RCg8EekCwntrdpa1qWVho88RP4jfwSjp0mo7BJiDdHOU7ik2P7O_bxdxB6zhU1NtIsUCyxQWIiEogoZ0GYZVYxK5T2jDfpgPYPkteH5HABvazPwlT8EM2Cm-sZfrx2HXys7dYlaehx5g6SC8puoKWEhtx5Xp39hjvKIR3vbcEcGwgYgmtaoTDaaqrOTUZLTq8XLjhSlaAfWyW2uAp5_h1A-Tuw9TNT7xb6XLepCkg53ZxOss382x90j__Z6NtoZYZY8XZlYnfQgilW0dp2Ad768CvewD6G1C_Or6LldLZVv4Zkp8p1j7vd3Z_ff1QErUZjm-7vYZ9_ByZNPLIYECgeq5MCD122gAvsIvGPcBRCpWGJAdhP8NCoApdfwJoNLs2RP5V3Fx30uh9e9YNZNocgB1DGgpzlMdHGZoKYhGohmG1nPMlFqHlMNSeaCq0oYVYzo2zbJQTRcEU4jBsxoI57aLEYFeYBwqKtMsdDFwsD_qnlSueMmnYe0kxBibfQi_q3ynxGde4ybpzJiqQ5kqBH6fXYQs8a0XHF73GV0Ia3jUZCnZ-6gDhG5KfBrnwfpsnHHdqXILg-ZzxNhSiOCTjOYQvh2pok9GO3OaMKM5qWkhFA0glh0fUiHMZa-BoOr7lf2d_l8wG5gyNLW4jNWWYj4FjE5-8UJ8eeTZyCyxwSpzNveNdrQfZ3Ul94-O-iT9Hyu05Pvt0bvHmEbvrIC3-O8zFanJxPzRMAdJNs3XfcXy9aR7E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+EEG%E2%80%90informed+fMRI+modeling+of+the+pain+matrix+using+20%E2%80%90ms+root+mean+square+segments&rft.jtitle=Human+brain+mapping&rft.au=Brinkmeyer%2C+Juergen&rft.au=Mobascher%2C+Arian&rft.au=Warbrick%2C+Tracy&rft.au=Musso%2C+Francesco&rft.date=2010-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=31&rft.issue=11&rft.spage=1702&rft.epage=1712&rft_id=info:doi/10.1002%2Fhbm.20967&rft.externalDBID=10.1002%252Fhbm.20967&rft.externalDocID=HBM20967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |