Dynamic EEG-informed fMRI modeling of the pain matrix using 20-ms root mean square segments

Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 31; no. 11; pp. 1702 - 1712
Main Authors Brinkmeyer, Juergen, Mobascher, Arian, Warbrick, Tracy, Musso, Francesco, Wittsack, Hans-Jörg, Saleh, Andreas, Schnitzler, Alfons, Winterer, Georg
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2010
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.20967

Cover

Loading…
Abstract Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid‐cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain‐induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole‐brain coverage. In this study, we thought to investigate the spatio‐temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference‐free measure of event‐related EEG activity) in a time window 0–400 ms poststimulus were used to model trial‐to‐trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG‐derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG‐time windows suggests largely parallel signal processing in the bilateral operculo‐insular and mid‐cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid‐cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain‐induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole‐brain coverage. In this study, we thought to investigate the spatio‐temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference‐free measure of event‐related EEG activity) in a time window 0–400 ms poststimulus were used to model trial‐to‐trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG‐derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG‐time windows suggests largely parallel signal processing in the bilateral operculo‐insular and mid‐cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.
Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG.Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG.
Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG. Hum Brain Mapp, 2010. [copy 2010 Wiley-Liss, Inc.
Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG.
Author Musso, Francesco
Schnitzler, Alfons
Brinkmeyer, Juergen
Wittsack, Hans-Jörg
Mobascher, Arian
Warbrick, Tracy
Saleh, Andreas
Winterer, Georg
AuthorAffiliation 5 Present address: Department of Psychiatry, Johannes Gutenberg University, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
1 Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich‐Heine University Duesseldorf, Germany
4 Institute for Clinical Neurosciences and Medical Psychology, Heinrich‐Heine University Duesseldorf, Germany
3 Institute of Radiology, Heinrich‐Heine University Duesseldorf, Germany
2 Institute of Neurosciences and Biophysics, Helmholtz Research Center Juelich, Germany
AuthorAffiliation_xml – name: 4 Institute for Clinical Neurosciences and Medical Psychology, Heinrich‐Heine University Duesseldorf, Germany
– name: 2 Institute of Neurosciences and Biophysics, Helmholtz Research Center Juelich, Germany
– name: 5 Present address: Department of Psychiatry, Johannes Gutenberg University, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
– name: 1 Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich‐Heine University Duesseldorf, Germany
– name: 3 Institute of Radiology, Heinrich‐Heine University Duesseldorf, Germany
Author_xml – sequence: 1
  givenname: Juergen
  surname: Brinkmeyer
  fullname: Brinkmeyer, Juergen
  organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany
– sequence: 2
  givenname: Arian
  surname: Mobascher
  fullname: Mobascher, Arian
  email: arian.mobascher@arcor.de, mobascher_a@psychiatrie.klinik.uni-mainz.de
  organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany
– sequence: 3
  givenname: Tracy
  surname: Warbrick
  fullname: Warbrick, Tracy
  organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany
– sequence: 4
  givenname: Francesco
  surname: Musso
  fullname: Musso, Francesco
  organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany
– sequence: 5
  givenname: Hans-Jörg
  surname: Wittsack
  fullname: Wittsack, Hans-Jörg
  organization: Institute of Radiology, Heinrich-Heine University Duesseldorf, Germany
– sequence: 6
  givenname: Andreas
  surname: Saleh
  fullname: Saleh, Andreas
  organization: Institute of Radiology, Heinrich-Heine University Duesseldorf, Germany
– sequence: 7
  givenname: Alfons
  surname: Schnitzler
  fullname: Schnitzler, Alfons
  organization: Institute for Clinical Neurosciences and Medical Psychology, Heinrich-Heine University Duesseldorf, Germany
– sequence: 8
  givenname: Georg
  surname: Winterer
  fullname: Winterer, Georg
  organization: Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23357170$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20162596$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhUeoiD5gwR9A3iDEYlp7ZvzaINESkkoNSDwXLCzH9iSGsZ3aM9D8ezwkDQ8JWNnW-c651_ceFwc-eFMUDxE8RRBWZ6uFO60gJ_ROcYQgpyVEvD4Y7wSXvKHosDhO6TOECGGI7hWHFUSkwpwcFZ9ebLx0VoHJZFpa34bojAbt_M0lcEGbzvolCC3oVwaspfXAyT7aGzCkUahg6RKIIfTAGelBuh5kNCCZpTO-T_eLu63sknmwO0-K9y8n7y5m5dXr6eXF86tSYdTQUlFVY23aBcemIZpz2qIFaxSHmtVEM6wJ15Jg2mpqZIsYIkznF2YQo5qg-qR4ts1dD4vcvcq1o-zEOlon40YEacXvircrsQxfBWEUQcxywJNdQAzXg0m9cDYp03XSmzAkwRgbp8vof0mKeV01mFaZfPRrU_tubkefgcc7QCYluzZKr2z6ydU1pojCzD3dciqGlKJp9wiCYly_yOsXP9af2bM_WGV72dsw_tt2_3J8s53Z_D1azM7nt45y67CpNzd7h4xfRFYpFh9fTcVbOG8-nJOZoPV3_CLOsw
CitedBy_id crossref_primary_10_1002_hbm_24791
crossref_primary_10_1016_j_neuroimage_2012_09_038
crossref_primary_10_1016_j_cortex_2018_08_024
crossref_primary_10_3389_fnins_2022_802239
crossref_primary_10_1093_brain_awr271
crossref_primary_10_1093_cercor_bhq097
crossref_primary_10_1016_j_neuroimage_2011_06_045
Cites_doi 10.1016/j.neuroimage.2004.07.014
10.1016/j.clinph.2004.11.016
10.1523/JNEUROSCI.22-03-00970.2002
10.1016/0013-4694(93)90156-P
10.1152/jn.00912.2003
10.1073/pnas.0505508102
10.1016/0168-5597(96)95625-7
10.1006/nimg.2002.1132
10.1006/nimg.2001.0931
10.1016/j.neuroimage.2005.06.060
10.1016/j.ijpsycho.2007.05.016
10.1016/j.neuroimage.2004.09.032
10.1093/brain/awg032
10.1016/j.neuroimage.2009.05.082
10.1023/A:1011184814194
10.1097/00004691-199310000-00009
10.1002/mrm.1910330508
10.1016/j.ijpsycho.2008.12.018
10.1016/j.neuroimage.2007.01.022
10.1007/s11916-999-0043-8
10.1162/neco.1995.7.6.1129
10.1093/brain/awf137
10.1016/j.clinph.2004.10.004
10.1016/0013-4694(95)98475-N
10.1016/j.neuroimage.2007.01.044
10.1152/jn.91181.2008
10.1002/hbm.20826
10.1073/pnas.94.20.10979
10.1016/j.neuron.2007.07.012
10.1016/j.neuroimage.2008.12.051
10.1073/pnas.182272899
10.1016/j.neuroimage.2008.04.244
10.1016/j.ijpsycho.2007.04.010
10.1152/jn.00260.2004
10.1016/j.pain.2004.04.009
10.1006/nimg.2000.0599
10.1038/jcbfm.1992.127
10.1016/S1388-2457(00)00527-7
10.1016/0013-4694(94)00259-N
10.1016/j.tics.2006.09.010
10.1016/j.neuroimage.2008.04.236
10.1016/j.neuroimage.2006.09.021
10.1006/nimg.1998.0361
10.1002/hbm.460010306
10.1016/j.clinph.2008.06.021
10.1016/j.neuron.2007.05.032
10.1162/jocn.2007.19.7.1081
10.1002/hbm.460030103
10.1152/jn.1998.79.4.2231
10.1054/jpai.2002.126788
10.1523/JNEUROSCI.3286-05.2005
10.1002/hbm.10062
10.1523/JNEUROSCI.2934-07.2008
10.1016/j.neucli.2003.10.008
10.1016/0013-4694(95)98476-O
10.1002/hbm.20289
10.1016/j.neuroimage.2008.09.004
10.1016/j.ejpain.2004.11.001
10.1152/jn.1999.81.6.3100
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
2015 INIST-CNRS
2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: 2015 INIST-CNRS
– notice: 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1002/hbm.20967
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE - Academic
Neurosciences Abstracts
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Dynamic EEG‐Informed fMRI Modeling
EISSN 1097-0193
EndPage 1712
ExternalDocumentID PMC6871058
20162596
23357170
10_1002_hbm_20967
HBM20967
ark_67375_WNG_S0M4VB6H_7
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Heinrich‐Heine University, Duesseldorf
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c5147-c7c35defb95e46d997f1b84c90d836d85d69da657fd7eaf18168d57f580513613
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:58:37 EDT 2025
Fri Sep 05 08:04:09 EDT 2025
Fri Sep 05 09:44:54 EDT 2025
Mon Jul 21 05:59:28 EDT 2025
Mon Jul 21 09:12:53 EDT 2025
Tue Jul 01 04:25:57 EDT 2025
Thu Apr 24 22:53:41 EDT 2025
Wed Jan 22 16:24:58 EST 2025
Wed Oct 30 09:46:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Nervous system diseases
laser-evoked potentials
Square root
Radiodiagnosis
Electrophysiology
root mean square
Electroencephalography
Nuclear magnetic resonance imaging
Modeling
Pain
Evoked potential
Laser
functional magnetic resonance imaging
Functional imaging
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5147-c7c35defb95e46d997f1b84c90d836d85d69da657fd7eaf18168d57f580513613
Notes ark:/67375/WNG-S0M4VB6H-7
Heinrich-Heine University, Duesseldorf
ArticleID:HBM20967
istex:AC0E7AAA8B0B1B6ED201A4F504E0709075BDC063
Juergen Brinkmeyer and Arian Mobascher contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20967?download=true
PMID 20162596
PQID 759324572
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871058
proquest_miscellaneous_888096787
proquest_miscellaneous_759324572
pubmed_primary_20162596
pascalfrancis_primary_23357170
crossref_primary_10_1002_hbm_20967
crossref_citationtrail_10_1002_hbm_20967
wiley_primary_10_1002_hbm_20967_HBM20967
istex_primary_ark_67375_WNG_S0M4VB6H_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2010
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: November 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Jenkinson M, Bannister P, Brady J, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841.
Debener S, Ullsperger M, Siegel M, Engel AK ( 2006): Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10: 558-563.
Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pélégrini-Issac M, Lina JM, Benali H ( 2007): Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 36: 69-87.
Büchel C, Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C ( 2002): Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: A parametric single-trial laser functional magnetic resonance study. J Neurosci 22: 970-976.
Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2005): Assessing the spatiotemporal evolution of neuronal activation with single trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102: 17798-17803.
Baudena P, Halgren E, Heit G, Clarke JM ( 1995): Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94: 251-264.
Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD ( 2008): Joint independent component analysis for simultaneous EEG-fMRI: Principle and simulation. Int J Psychophysiol 67: 212-221.
Smith S ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155.
Perchet C, Godinho F, Mazza S, Frot M, Legrain V, Magnin M, Garcia-Larrea L ( 2008): Evoked potentials to nociceptive stimuli delivered by CO2 or Nd:YAP lasers. Clin Neurophysiol 119: 2615-2622.
Ploner M, Schmitz F, Freund HJ, Schnitzler A ( 1999): Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100-3104.
Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C, Büchel C ( 2002): Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal cortex, insula and somatosensory cortex: A single-trial fMRI study. Brain 2002: 1326-1336.
Bell AJ, Sejnowski TJ ( 1995): An information-maximation approach to blind separation and blind deconvolution. Neural Comput 7: 1129-1159.
Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004a): Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110: 318-328.
Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004b): Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734-2746.
Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engels AK ( 2005): Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25: 11730-11737.
Behrens T, Woolrich MW, Smith S ( 2003): Multi-Testing Using a Fully Subject Null Hypothesis Bayesian Framework: Theory. New York: Human Brain Mapping Meeting.
Winterer G, Mulert C, Mientus S, Gallinat J, Schlattmann P, Dorn H, Herrmann WM ( 2001): P300 and LORETA: Comparison of normal subjects and schizophrenic patients. Brain Topogr 13: 299-313.
Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, Chauvel P, Musolino A ( 1995a): Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94: 191-220.
Ploner M, Pollok B, Schnitzler A ( 2004): Pain facilitates tactile processing in human somatosensory cortices. J Neurophysiol 92: 1825-1829.
Allen P, Polizzi G, Krakow K, Fish DR, Lemieux L ( 1998): Identification of EEG Events in the MR scanner: The problem of pulse artifact and a method for its subtraction. NeuroImage 8: 229-239.
Dowman R, Darcey T, Barkan H, Thadani V, Roberts D ( 2007): Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. NeuroImage 34: 743-763.
Eichele T, Calhoun V, Moosmann M, Specht K, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2008): Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol 67: 222-234.
Worsley KJ, Evans AC, Marrett S, Neelin P ( 1992): A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900-918.
Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC ( 1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn Reson Med 33: 636-647.
de Munck JC, Goncalves SI, Huijboom L, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2007): The hemodynamic response of the alpha rhythm: an EEG/fMRI study. NeuroImage 35: 1142-1151.
Garcia-Larrea L, Frot M, Valeriani M ( 2003): Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiol Clin 33: 279-292.
Kakigi R, Inui K, Tamura Y ( 2005): Electrophysiological studies on human pain perception. Clin Neurophysiol 166: 743-763.
Rorden C, Karnath HO, Bonilha L ( 2007): Improving lesion-symptom mapping. J Cogn Neurosci 19: 1081-1088.
Eichele T, Calhoun VD, Debener S ( 2009): Mining EEG-fMRI using independent component analysis. Int J Psychophysiol 73: 53-61.
Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G ( 2005): Laser-evoked potentials: Normative values. Clin Neurophysiol 116: 821-826.
de Munck JC, Goncalves SI, Faes TJ, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2008): A study of the brain's resting state based on alpha band power, heart rate and fMRI. NeuroImage 42: 112-121.
Ploner M, Schoffelen JM, Schnitzler A, Gross J ( 2009): Functional integration within the human pain system as revealed by Granger causality. Hum Brain Mapp 30: 4025-4032.
Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelation in univariate linear modelling of fMRI data. NeuroImage 14: 1370-1386.
Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Stoermer R, Saleh A, Schnitzler A, Winterer G ( 2009b): Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimulation-A fMRI/EEG study. NeuroImage 44: 1081-1092.
Frot M, Mauguière F ( 2003): Dual representation of pain in the operculo-insular cortex in humans. Brain 126: 438-450.
Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Saleh A, Schnitzler A, Winterer G ( 2009a): Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures. NeuroImage 45: 917-926.
Lenz FA, Rios M, Zirh A, Chau D, Krauss G, Lesser RP ( 1998): Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79: 2231-2234.
Rios M, Treede R, Lee J, Lenz FA ( 1999): Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex. Curr Rev Pain 3: 256-264.
Tracey I, Mantyh PW ( 2007): The cerebral signature for pain perception and its modulation. Neuron 55: 377-391.
Frot M, Mauguière F, Magnin F, Garcia-Larrea L ( 2008): Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in humans. J Neurosci 28: 944-952.
Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A ( 1995b): Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94: 229-250.
Benar C-G, Schön D, Grimault S, Nazarian B, Burle B, Roth M, Badier J-M, Marquis P, Liegeois-Chauvel C, Anton J-C ( 2007): Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Bain Mapp 28: 602-613.
Derbyshire SWG, Nichols TE, Firestone L, Townsend DW, Jones AKP ( 2002): Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation. J Pain 3: 401-411.
Makeig S, Bell AJ, Jung T-P, Ghahremani D, Sejnowski TJ ( 1997): Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94: 10979-10984.
Bingel U, Rose M, Gläscher J, Büchel C ( 2007): fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron 55: 157-167.
Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL ( 1993): Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87: 417-420.
Mouraux A, Iannetti GD ( 2009): Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol 101: 3258-3269.
Apkarian AV, Bushnell MC, Treede RD, Zubieta JK ( 2005): Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463-484.
Allen P, Josephs O, Turner R ( 2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 1: 230-239.
Oostenveld R, Praamstra P ( 2001): The five percent electrode system for high resolution EEG and ERP measurement. Clin Neurophysiol 112: 713-719.
Valeriani M, Rambaud L, Mauguiere F ( 1996): Scalp topography and dipolar source modelling of potentials evoked by CO2 laser stimulation of the hand. Electroenceph Clin Neurophysiol 100: 343-353.
Forss N, Raji TT, Seppä M, Hari R ( 2005): Common cortical network for first and second pain. NeuroImage 24: 132-142.
Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller HJ, Hegerl U, Pogarell O, Jäger L ( 2008): Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42: 158-168.
Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM ( 2004): Mapping human brain function with MEG and EEG: Methods and validation. NeuroI
2004b; 91
2002; 17
2009; 47
2009b; 44
2004; 23
1995; 33
2002; 99
1996; 100
2000; 1
1999; 81
2005; 28
2007; 34
1992; 12
2007; 35
2007; 36
2005; 24
2005; 25
2007; 28
2002; 2002
1997; 94
2001
2005; 102
2008; 28
2008; 119
2008; 67
2003; 126
2001; 13
2001; 14
2007; 19
1995; 94
2006; 10
1993; 87
1995b; 94
2005; 116
2002; 3
2004a; 110
1999; 3
2003
2007; 55
1995; 3
2003; 33
1995; 7
1995a; 94
2001; 112
2009; 30
2009; 73
2004; 92
2005; 166
2005; 9
1993; 10
2002; 22
2009; 101
2008; 42
2009a; 45
1994; 1
1998; 8
1998; 79
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Behrens T (e_1_2_6_6_1) 2003
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
Jensen MP (e_1_2_6_35_1) 2001
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Eichele T, Calhoun V, Moosmann M, Specht K, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2008): Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol 67: 222-234.
– reference: Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JCW, Zambreanu L, Vennart W, Matthews PM, Tracey I ( 2005): Simultaneous recording of laser-evoked potentials and continuous, high-field functional magnetic resonance imaging in humans. NeuroImage 28: 708-719.
– reference: Bingel U, Rose M, Gläscher J, Büchel C ( 2007): fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron 55: 157-167.
– reference: Bell AJ, Sejnowski TJ ( 1995): An information-maximation approach to blind separation and blind deconvolution. Neural Comput 7: 1129-1159.
– reference: Perchet C, Godinho F, Mazza S, Frot M, Legrain V, Magnin M, Garcia-Larrea L ( 2008): Evoked potentials to nociceptive stimuli delivered by CO2 or Nd:YAP lasers. Clin Neurophysiol 119: 2615-2622.
– reference: Valeriani M, Rambaud L, Mauguiere F ( 1996): Scalp topography and dipolar source modelling of potentials evoked by CO2 laser stimulation of the hand. Electroenceph Clin Neurophysiol 100: 343-353.
– reference: de Munck JC, Goncalves SI, Huijboom L, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2007): The hemodynamic response of the alpha rhythm: an EEG/fMRI study. NeuroImage 35: 1142-1151.
– reference: Makeig S, Bell AJ, Jung T-P, Ghahremani D, Sejnowski TJ ( 1997): Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94: 10979-10984.
– reference: Huang-Hellinger FR, Breiter HC, McCormack G, Cohen MS, Kwong KK, Sutton JP, Savoy RL, Weisskoff RM, Davis TL, Baker JR, Belliveau JW, Rosen BR ( 1995): Simultaneous functional magnetic resonance imaging and electrophysiological recording. Hum Brain Mapp 3: 13-23.
– reference: Jenkinson M, Bannister P, Brady J, Smith S ( 2002): Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841.
– reference: Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C, Büchel C ( 2002): Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal cortex, insula and somatosensory cortex: A single-trial fMRI study. Brain 2002: 1326-1336.
– reference: Ploner M, Pollok B, Schnitzler A ( 2004): Pain facilitates tactile processing in human somatosensory cortices. J Neurophysiol 92: 1825-1829.
– reference: Mouraux A, Iannetti GD ( 2009): Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol 101: 3258-3269.
– reference: Allen P, Josephs O, Turner R ( 2000): A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 1: 230-239.
– reference: Winterer G, Mulert C, Mientus S, Gallinat J, Schlattmann P, Dorn H, Herrmann WM ( 2001): P300 and LORETA: Comparison of normal subjects and schizophrenic patients. Brain Topogr 13: 299-313.
– reference: Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller HJ, Hegerl U, Pogarell O, Jäger L ( 2008): Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. NeuroImage 42: 158-168.
– reference: Dowman R, Darcey T, Barkan H, Thadani V, Roberts D ( 2007): Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. NeuroImage 34: 743-763.
– reference: Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G ( 2005): Laser-evoked potentials: Normative values. Clin Neurophysiol 116: 821-826.
– reference: Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K ( 2005): Assessing the spatiotemporal evolution of neuronal activation with single trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102: 17798-17803.
– reference: Debener S, Ullsperger M, Siegel M, Engel AK ( 2006): Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10: 558-563.
– reference: Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC ( 1994): Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1: 214-220.
– reference: Warbrick T, Mobascher A, Brinkmeyer J, Musso F, Richter N, Stoecker T, Fink GR, Shah NJ, Winterer G ( 2009): Single-trial P3 amplitude and latency informed event-related fMRI models yield different BOLD response patterns to a target detection task. NeuroImage 47: 1532-1544.
– reference: Eichele T, Calhoun VD, Debener S ( 2009): Mining EEG-fMRI using independent component analysis. Int J Psychophysiol 73: 53-61.
– reference: Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A ( 1995b): Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94: 229-250.
– reference: Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL ( 1993): Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87: 417-420.
– reference: Worsley KJ, Evans AC, Marrett S, Neelin P ( 1992): A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900-918.
– reference: Tarkka IM, Treede RD ( 1993): Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10: 513-519.
– reference: Benar C-G, Schön D, Grimault S, Nazarian B, Burle B, Roth M, Badier J-M, Marquis P, Liegeois-Chauvel C, Anton J-C ( 2007): Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Bain Mapp 28: 602-613.
– reference: Ploner M, Schoffelen JM, Schnitzler A, Gross J ( 2009): Functional integration within the human pain system as revealed by Granger causality. Hum Brain Mapp 30: 4025-4032.
– reference: Kakigi R, Inui K, Tamura Y ( 2005): Electrophysiological studies on human pain perception. Clin Neurophysiol 166: 743-763.
– reference: Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM ( 2004): Mapping human brain function with MEG and EEG: Methods and validation. NeuroImage 23: S289-S299.
– reference: Lenz FA, Rios M, Zirh A, Chau D, Krauss G, Lesser RP ( 1998): Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79: 2231-2234.
– reference: Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004a): Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110: 318-328.
– reference: Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, Chauvel P, Musolino A ( 1995a): Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94: 191-220.
– reference: Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Stoermer R, Saleh A, Schnitzler A, Winterer G ( 2009b): Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimulation-A fMRI/EEG study. NeuroImage 44: 1081-1092.
– reference: Oostenveld R, Praamstra P ( 2001): The five percent electrode system for high resolution EEG and ERP measurement. Clin Neurophysiol 112: 713-719.
– reference: Moosmann M, Eichele T, Nordby H, Hugdahl K, Calhoun VD ( 2008): Joint independent component analysis for simultaneous EEG-fMRI: Principle and simulation. Int J Psychophysiol 67: 212-221.
– reference: Frot M, Mauguière F ( 2003): Dual representation of pain in the operculo-insular cortex in humans. Brain 126: 438-450.
– reference: Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pélégrini-Issac M, Lina JM, Benali H ( 2007): Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage 36: 69-87.
– reference: Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Saleh A, Schnitzler A, Winterer G ( 2009a): Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures. NeuroImage 45: 917-926.
– reference: Ploner M, Schmitz F, Freund HJ, Schnitzler A ( 1999): Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100-3104.
– reference: Rorden C, Karnath HO, Bonilha L ( 2007): Improving lesion-symptom mapping. J Cogn Neurosci 19: 1081-1088.
– reference: Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engels AK ( 2005): Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25: 11730-11737.
– reference: Behrens T, Woolrich MW, Smith S ( 2003): Multi-Testing Using a Fully Subject Null Hypothesis Bayesian Framework: Theory. New York: Human Brain Mapping Meeting.
– reference: Forss N, Raji TT, Seppä M, Hari R ( 2005): Common cortical network for first and second pain. NeuroImage 24: 132-142.
– reference: Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA ( 2004b): Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734-2746.
– reference: Ploner M, Gross J, Timmermann L, Schnitzler A ( 2002): Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci USA 99: 12444-12448.
– reference: Smith S ( 2002): Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155.
– reference: de Munck JC, Goncalves SI, Faes TJ, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH ( 2008): A study of the brain's resting state based on alpha band power, heart rate and fMRI. NeuroImage 42: 112-121.
– reference: Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC ( 1995): Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magn Reson Med 33: 636-647.
– reference: Allen P, Polizzi G, Krakow K, Fish DR, Lemieux L ( 1998): Identification of EEG Events in the MR scanner: The problem of pulse artifact and a method for its subtraction. NeuroImage 8: 229-239.
– reference: Büchel C, Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C ( 2002): Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: A parametric single-trial laser functional magnetic resonance study. J Neurosci 22: 970-976.
– reference: Derbyshire SWG, Nichols TE, Firestone L, Townsend DW, Jones AKP ( 2002): Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation. J Pain 3: 401-411.
– reference: Apkarian AV, Bushnell MC, Treede RD, Zubieta JK ( 2005): Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463-484.
– reference: Baudena P, Halgren E, Heit G, Clarke JM ( 1995): Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94: 251-264.
– reference: Tracey I, Mantyh PW ( 2007): The cerebral signature for pain perception and its modulation. Neuron 55: 377-391.
– reference: Woolrich MW, Ripley BD, Brady M, Smith SM ( 2001): Temporal autocorrelation in univariate linear modelling of fMRI data. NeuroImage 14: 1370-1386.
– reference: Frot M, Mauguière F, Magnin F, Garcia-Larrea L ( 2008): Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in humans. J Neurosci 28: 944-952.
– reference: Rios M, Treede R, Lee J, Lenz FA ( 1999): Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex. Curr Rev Pain 3: 256-264.
– reference: Garcia-Larrea L, Frot M, Valeriani M ( 2003): Brain generators of laser-evoked potentials: From dipoles to functional significance. Neurophysiol Clin 33: 279-292.
– volume: 67
  start-page: 222
  year: 2008
  end-page: 234
  article-title: Unmixing concurrent EEG‐fMRI with parallel independent component analysis
  publication-title: Int J Psychophysiol
– volume: 28
  start-page: 602
  year: 2007
  end-page: 613
  article-title: Single‐trial analysis of oddball event‐related potentials in simultaneous EEG‐fMRI
  publication-title: Hum Bain Mapp
– volume: 3
  start-page: 13
  year: 1995
  end-page: 23
  article-title: Simultaneous functional magnetic resonance imaging and electrophysiological recording
  publication-title: Hum Brain Mapp
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 13
  start-page: 299
  year: 2001
  end-page: 313
  article-title: P300 and LORETA: Comparison of normal subjects and schizophrenic patients
  publication-title: Brain Topogr
– volume: 36
  start-page: 69
  year: 2007
  end-page: 87
  article-title: Symmetrical event‐related EEG/fMRI information fusion in a variational Bayesian framework
  publication-title: Neuroimage
– volume: 102
  start-page: 17798
  year: 2005
  end-page: 17803
  article-title: Assessing the spatiotemporal evolution of neuronal activation with single trial event‐related potentials and functional MRI
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 900
  year: 1992
  end-page: 918
  article-title: A three‐dimensional statistical analysis for CBF activation studies in human brain
  publication-title: J Cereb Blood Flow Metab
– volume: 119
  start-page: 2615
  year: 2008
  end-page: 2622
  article-title: Evoked potentials to nociceptive stimuli delivered by CO or Nd:YAP lasers
  publication-title: Clin Neurophysiol
– volume: 94
  start-page: 191
  year: 1995a
  end-page: 220
  article-title: Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 1
  start-page: 230
  year: 2000
  end-page: 239
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: NeuroImage
– volume: 9
  start-page: 463
  year: 2005
  end-page: 484
  article-title: Human brain mechanisms of pain perception and regulation in health and disease
  publication-title: Eur J Pain
– volume: 2002
  start-page: 1326
  year: 2002
  end-page: 1336
  article-title: Painful stimuli evoke different stimulus‐response functions in the amygdala, prefrontal cortex, insula and somatosensory cortex: A single‐trial fMRI study
  publication-title: Brain
– volume: 24
  start-page: 132
  year: 2005
  end-page: 142
  article-title: Common cortical network for first and second pain
  publication-title: NeuroImage
– volume: 55
  start-page: 377
  year: 2007
  end-page: 391
  article-title: The cerebral signature for pain perception and its modulation
  publication-title: Neuron
– volume: 91
  start-page: 2734
  year: 2004b
  end-page: 2746
  article-title: Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans
  publication-title: J Neurophysiol
– volume: 28
  start-page: 944
  year: 2008
  end-page: 952
  article-title: Parallel processing of nociceptive A‐δ inputs in SII and midcingulate cortex in humans
  publication-title: J Neurosci
– volume: 23
  start-page: S289
  year: 2004
  end-page: S299
  article-title: Mapping human brain function with MEG and EEG: Methods and validation
  publication-title: NeuroImage
– volume: 99
  start-page: 12444
  year: 2002
  end-page: 12448
  article-title: Cortical representation of first and second pain sensation in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 212
  year: 2008
  end-page: 221
  article-title: Joint independent component analysis for simultaneous EEG‐fMRI: Principle and simulation
  publication-title: Int J Psychophysiol
– volume: 10
  start-page: 558
  year: 2006
  end-page: 563
  article-title: Single‐trial EEG‐fMRI reveals the dynamics of cognitive function
  publication-title: Trends Cogn Sci
– volume: 33
  start-page: 636
  year: 1995
  end-page: 647
  article-title: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster‐size threshold
  publication-title: Magn Reson Med
– volume: 110
  start-page: 318
  year: 2004a
  end-page: 328
  article-title: Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity
  publication-title: Pain
– volume: 73
  start-page: 53
  year: 2009
  end-page: 61
  article-title: Mining EEG‐fMRI using independent component analysis
  publication-title: Int J Psychophysiol
– start-page: 15
  year: 2001
  end-page: 34
– volume: 28
  start-page: 708
  year: 2005
  end-page: 719
  article-title: Simultaneous recording of laser‐evoked potentials and continuous, high‐field functional magnetic resonance imaging in humans
  publication-title: NeuroImage
– volume: 94
  start-page: 10979
  year: 1997
  end-page: 10984
  article-title: Blind separation of auditory event‐related brain responses into independent components
  publication-title: Proc Natl Acad Sci USA
– volume: 166
  start-page: 743
  year: 2005
  end-page: 763
  article-title: Electrophysiological studies on human pain perception
  publication-title: Clin Neurophysiol
– volume: 3
  start-page: 401
  year: 2002
  end-page: 411
  article-title: Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation
  publication-title: J Pain
– volume: 25
  start-page: 11730
  year: 2005
  end-page: 11737
  article-title: Trial‐by‐trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring
  publication-title: J Neurosci
– volume: 22
  start-page: 970
  year: 2002
  end-page: 976
  article-title: Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: A parametric single‐trial laser functional magnetic resonance study
  publication-title: J Neurosci
– volume: 79
  start-page: 2231
  year: 1998
  end-page: 2234
  article-title: Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus
  publication-title: J Neurophysiol
– volume: 42
  start-page: 158
  year: 2008
  end-page: 168
  article-title: Single‐trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making
  publication-title: NeuroImage
– volume: 34
  start-page: 743
  year: 2007
  end-page: 763
  article-title: Human intracranially‐recorded cortical responses evoked by painful electrical stimulation of the sural nerve
  publication-title: NeuroImage
– volume: 87
  start-page: 417
  year: 1993
  end-page: 420
  article-title: Monitoring the patient's EEG during echo planar MRI
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 3
  start-page: 256
  year: 1999
  end-page: 264
  article-title: Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex
  publication-title: Curr Rev Pain
– volume: 101
  start-page: 3258
  year: 2009
  end-page: 3269
  article-title: Nociceptive laser‐evoked brain potentials do not reflect nociceptive‐specific neural activity
  publication-title: J Neurophysiol
– year: 2003
– volume: 126
  start-page: 438
  year: 2003
  end-page: 450
  article-title: Dual representation of pain in the operculo‐insular cortex in humans
  publication-title: Brain
– volume: 112
  start-page: 713
  year: 2001
  end-page: 719
  article-title: The five percent electrode system for high resolution EEG and ERP measurement
  publication-title: Clin Neurophysiol
– volume: 19
  start-page: 1081
  year: 2007
  end-page: 1088
  article-title: Improving lesion‐symptom mapping
  publication-title: J Cogn Neurosci
– volume: 1
  start-page: 214
  year: 1994
  end-page: 220
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum Brain Mapp
– volume: 42
  start-page: 112
  year: 2008
  end-page: 121
  article-title: A study of the brain's resting state based on alpha band power, heart rate and fMRI
  publication-title: NeuroImage
– volume: 30
  start-page: 4025
  year: 2009
  end-page: 4032
  article-title: Functional integration within the human pain system as revealed by Granger causality
  publication-title: Hum Brain Mapp
– volume: 116
  start-page: 821
  year: 2005
  end-page: 826
  article-title: Laser‐evoked potentials: Normative values
  publication-title: Clin Neurophysiol
– volume: 10
  start-page: 513
  year: 1993
  end-page: 519
  article-title: Equivalent electrical source analysis of pain‐related somatosensory evoked potentials elicited by a CO2 laser
  publication-title: J Clin Neurophysiol
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  article-title: An information‐maximation approach to blind separation and blind deconvolution
  publication-title: Neural Comput
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– volume: 35
  start-page: 1142
  year: 2007
  end-page: 1151
  article-title: The hemodynamic response of the alpha rhythm: an EEG/fMRI study
  publication-title: NeuroImage
– volume: 33
  start-page: 279
  year: 2003
  end-page: 292
  article-title: Brain generators of laser‐evoked potentials: From dipoles to functional significance
  publication-title: Neurophysiol Clin
– volume: 44
  start-page: 1081
  year: 2009b
  end-page: 1092
  article-title: Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimulation—A fMRI/EEG study
  publication-title: NeuroImage
– volume: 55
  start-page: 157
  year: 2007
  end-page: 167
  article-title: fMRI reveals how pain modulates visual object processing in the ventral visual stream
  publication-title: Neuron
– volume: 81
  start-page: 3100
  year: 1999
  end-page: 3104
  article-title: Parallel activation of primary and secondary somatosensory cortices in human pain processing
  publication-title: J Neurophysiol
– volume: 100
  start-page: 343
  year: 1996
  end-page: 353
  article-title: Scalp topography and dipolar source modelling of potentials evoked by CO laser stimulation of the hand
  publication-title: Electroenceph Clin Neurophysiol
– volume: 92
  start-page: 1825
  year: 2004
  end-page: 1829
  article-title: Pain facilitates tactile processing in human somatosensory cortices
  publication-title: J Neurophysiol
– volume: 94
  start-page: 229
  year: 1995b
  end-page: 250
  article-title: Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 45
  start-page: 917
  year: 2009a
  end-page: 926
  article-title: Laser‐evoked potential P2 single‐trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures
  publication-title: NeuroImage
– volume: 14
  start-page: 1370
  year: 2001
  end-page: 1386
  article-title: Temporal autocorrelation in univariate linear modelling of fMRI data
  publication-title: NeuroImage
– volume: 47
  start-page: 1532
  year: 2009
  end-page: 1544
  article-title: Single‐trial P3 amplitude and latency informed event‐related fMRI models yield different BOLD response patterns to a target detection task
  publication-title: NeuroImage
– volume: 8
  start-page: 229
  year: 1998
  end-page: 239
  article-title: Identification of EEG Events in the MR scanner: The problem of pulse artifact and a method for its subtraction
  publication-title: NeuroImage
– volume: 94
  start-page: 251
  year: 1995
  end-page: 264
  article-title: Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex
  publication-title: Electroencephalogr Clin Neurophysiol
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuroimage.2004.07.014
– ident: e_1_2_6_36_1
  doi: 10.1016/j.clinph.2004.11.016
– ident: e_1_2_6_11_1
  doi: 10.1523/JNEUROSCI.22-03-00970.2002
– ident: e_1_2_6_33_1
  doi: 10.1016/0013-4694(93)90156-P
– volume-title: Multi‐Testing Using a Fully Subject Null Hypothesis Bayesian Framework: Theory
  year: 2003
  ident: e_1_2_6_6_1
– ident: e_1_2_6_45_1
  doi: 10.1152/jn.00912.2003
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.0505508102
– ident: e_1_2_6_58_1
  doi: 10.1016/0168-5597(96)95625-7
– ident: e_1_2_6_34_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_6_61_1
  doi: 10.1006/nimg.2001.0931
– ident: e_1_2_6_32_1
  doi: 10.1016/j.neuroimage.2005.06.060
– ident: e_1_2_6_41_1
  doi: 10.1016/j.ijpsycho.2007.05.016
– ident: e_1_2_6_24_1
  doi: 10.1016/j.neuroimage.2004.09.032
– ident: e_1_2_6_26_1
  doi: 10.1093/brain/awg032
– ident: e_1_2_6_59_1
  doi: 10.1016/j.neuroimage.2009.05.082
– ident: e_1_2_6_60_1
  doi: 10.1023/A:1011184814194
– ident: e_1_2_6_55_1
  doi: 10.1097/00004691-199310000-00009
– ident: e_1_2_6_23_1
  doi: 10.1002/mrm.1910330508
– ident: e_1_2_6_22_1
  doi: 10.1016/j.ijpsycho.2008.12.018
– ident: e_1_2_6_16_1
  doi: 10.1016/j.neuroimage.2007.01.022
– ident: e_1_2_6_52_1
  doi: 10.1007/s11916-999-0043-8
– ident: e_1_2_6_7_1
  doi: 10.1162/neco.1995.7.6.1129
– ident: e_1_2_6_10_1
  doi: 10.1093/brain/awf137
– ident: e_1_2_6_57_1
  doi: 10.1016/j.clinph.2004.10.004
– ident: e_1_2_6_30_1
  doi: 10.1016/0013-4694(95)98475-N
– ident: e_1_2_6_13_1
  doi: 10.1016/j.neuroimage.2007.01.044
– ident: e_1_2_6_42_1
  doi: 10.1152/jn.91181.2008
– ident: e_1_2_6_51_1
  doi: 10.1002/hbm.20826
– ident: e_1_2_6_38_1
  doi: 10.1073/pnas.94.20.10979
– ident: e_1_2_6_56_1
  doi: 10.1016/j.neuron.2007.07.012
– ident: e_1_2_6_39_1
  doi: 10.1016/j.neuroimage.2008.12.051
– ident: e_1_2_6_49_1
  doi: 10.1073/pnas.182272899
– ident: e_1_2_6_17_1
  doi: 10.1016/j.neuroimage.2008.04.244
– ident: e_1_2_6_21_1
  doi: 10.1016/j.ijpsycho.2007.04.010
– ident: e_1_2_6_50_1
  doi: 10.1152/jn.00260.2004
– ident: e_1_2_6_44_1
  doi: 10.1016/j.pain.2004.04.009
– ident: e_1_2_6_3_1
  doi: 10.1006/nimg.2000.0599
– ident: e_1_2_6_62_1
  doi: 10.1038/jcbfm.1992.127
– ident: e_1_2_6_46_1
  doi: 10.1016/S1388-2457(00)00527-7
– ident: e_1_2_6_29_1
  doi: 10.1016/0013-4694(94)00259-N
– ident: e_1_2_6_15_1
  doi: 10.1016/j.tics.2006.09.010
– ident: e_1_2_6_43_1
  doi: 10.1016/j.neuroimage.2008.04.236
– ident: e_1_2_6_19_1
  doi: 10.1016/j.neuroimage.2006.09.021
– ident: e_1_2_6_2_1
  doi: 10.1006/nimg.1998.0361
– ident: e_1_2_6_25_1
  doi: 10.1002/hbm.460010306
– ident: e_1_2_6_47_1
  doi: 10.1016/j.clinph.2008.06.021
– ident: e_1_2_6_9_1
  doi: 10.1016/j.neuron.2007.05.032
– ident: e_1_2_6_53_1
  doi: 10.1162/jocn.2007.19.7.1081
– ident: e_1_2_6_31_1
  doi: 10.1002/hbm.460030103
– ident: e_1_2_6_37_1
  doi: 10.1152/jn.1998.79.4.2231
– ident: e_1_2_6_18_1
  doi: 10.1054/jpai.2002.126788
– ident: e_1_2_6_14_1
  doi: 10.1523/JNEUROSCI.3286-05.2005
– start-page: 15
  volume-title: Handbook of Pain Assessment
  year: 2001
  ident: e_1_2_6_35_1
– ident: e_1_2_6_54_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_6_27_1
  doi: 10.1523/JNEUROSCI.2934-07.2008
– ident: e_1_2_6_28_1
  doi: 10.1016/j.neucli.2003.10.008
– ident: e_1_2_6_5_1
  doi: 10.1016/0013-4694(95)98476-O
– ident: e_1_2_6_8_1
  doi: 10.1002/hbm.20289
– ident: e_1_2_6_40_1
  doi: 10.1016/j.neuroimage.2008.09.004
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ejpain.2004.11.001
– ident: e_1_2_6_48_1
  doi: 10.1152/jn.1999.81.6.3100
SSID ssj0011501
Score 2.0104516
Snippet Previous studies on the spatio‐temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial...
Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1702
SubjectTerms Adult
Biological and medical sciences
Brain Mapping - methods
Cerebral Cortex - physiopathology
Electrodiagnosis. Electric activity recording
electroencephalography
Electroencephalography - methods
Female
functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
laser-evoked potentials
Magnetic Resonance Imaging - methods
Male
Medical sciences
Nervous system
pain
Pain - physiopathology
Pain Perception - physiology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
root mean square
Title Dynamic EEG-informed fMRI modeling of the pain matrix using 20-ms root mean square segments
URI https://api.istex.fr/ark:/67375/WNG-S0M4VB6H-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20967
https://www.ncbi.nlm.nih.gov/pubmed/20162596
https://www.proquest.com/docview/759324572
https://www.proquest.com/docview/888096787
https://pubmed.ncbi.nlm.nih.gov/PMC6871058
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIiEu_LRAt0BlIVRxSZtNYjsWpxa2XZDSQ6HQA5Ll37Yqm22bXalw4hF4Rp6Esb1JWWglxM1Rxkk8GdvfJDPfIPSilNS6zLBEssIlhc1IwjPNklQpJ5nj0gTGm2qPDg-Kd4fkcAG9anNhIj9E98HNz4ywXvsJLlWzeUUaeqx8IjmnPpPcx2p5QLTfUUd5oBOcLdhiEw4rcMsqlGabXc-5veiWV-ulj42UDajHxboW1wHPv-Mnf8e1YWPauYc-t0OK8SinG9OJ2tDf_mB7_M8x30d3Z4AVb0ULe4AWbL2ElrdqcNZHX_E6DiGk4dv8Erpdzf7ULyPxJpa6x4PB7s_vPyI_qzXYVftvcSi_A3smHjsMABSfyZMaj3yxgEvsA_GPcJZCp1GDAddP8MjKGjfnYMwWN_YoJOU9RAc7gw-vh8msmEOiAZOxRDOdE2Od4sQW1HDOXF-VheapKXNqSmIoN5IS5gyz0vV9PRADR6SEZSMH0PEILdbj2q4gzPtSeRq6nFtwT10pjWbU9nVKlYRW2UMv29cq9Izp3Bfc-CIiR3MmQI8i6LGHnneiZ5He4zqh9WAbnYS8OPXxcIyIT3u74n1aFR-36VCA4Nqc8XQdsjwn4DenPYRbaxIwjf2_GVnb8bQRjACQLgjLbhYpYamFpynhNo-j_V1dH4A7-LG0h9icZXYCnkR8_kx9chzIxCl4zCnxOguGd7MWxHC7Co3Vfxd9gu6EaIuQu_kULU4upvYZgLiJWguz9RcFo0Tg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFoufUBLtw9qVRXqJZBNYjuWeoGysLRkDxQKl8pyYhsQ3SwluxLtqT-hv7G_pGNnN3RbkKreEmWcx2TG_sYefwPwKlXM2EjzQPHEBomJaCCiggdhnlvFrVDaM95kPdY9SN4d0aMZeDPZC1PzQzQTbs4zfH_tHNxNSK9dsYae5G4nuWD8Fsy5it7OLTf3GvIoB3V8uIWDbCCwD57wCoXRWtN0ajSac4q9dNmRqkIF2bqyxXXQ8-8Myt-RrR-atu7Bp8lH1RkpZ6ujYb5afPuD7_F_v_o-3B1jVrJeG9kDmDHlAiyulxiv97-SFeKzSP30_ALczsaL9YsgN-tq96TT2f75_UdN0Wo0sdneDvEVeHDYJANLEIOSc3Vakr6rF3BJXC7-MYlCbNSvCEL7IekbVZLqC9qzIZU59vvyHsLBVmf_bTcY13MICoRlPCh4EVNtbC6oSZgWgtt2niaFCHUaM51SzYRWjHKruVG27UqCaDyjKfYcMeKORzBbDkrzGIhoq9wx0cXCYIRqU6ULzky7CFmu8ChtwevJf5XFmOzc1dz4LGua5kiiHqXXYwteNqLnNcPHdUIr3jgaCXVx5lLiOJWHvW35IcySjxusK1Fwecp6mgZRHFMMncMWkIk5SfRktzyjSjMYVZJTxNIJ5dHNIin2tvg2KT5mqTbAq_sjdsdQlrWAT5lmI-B4xKevlKcnnk-cYdAcUqczb3k3a0F2NzJ_8OTfRV_Ane5-tit3d3rvn8K8T77wWzmfwezwYmSeI6Yb5svedX8BFs1I-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28DNi4lMuwEJp4yZYm8U08bbRdB6RCg8EekCwntrdpa1qWVho88RP4jfwSjp0mo7BJiDdHOU7ik2P7O_bxdxB6zhU1NtIsUCyxQWIiEogoZ0GYZVYxK5T2jDfpgPYPkteH5HABvazPwlT8EM2Cm-sZfrx2HXys7dYlaehx5g6SC8puoKWEhtx5Xp39hjvKIR3vbcEcGwgYgmtaoTDaaqrOTUZLTq8XLjhSlaAfWyW2uAp5_h1A-Tuw9TNT7xb6XLepCkg53ZxOss382x90j__Z6NtoZYZY8XZlYnfQgilW0dp2Ad768CvewD6G1C_Or6LldLZVv4Zkp8p1j7vd3Z_ff1QErUZjm-7vYZ9_ByZNPLIYECgeq5MCD122gAvsIvGPcBRCpWGJAdhP8NCoApdfwJoNLs2RP5V3Fx30uh9e9YNZNocgB1DGgpzlMdHGZoKYhGohmG1nPMlFqHlMNSeaCq0oYVYzo2zbJQTRcEU4jBsxoI57aLEYFeYBwqKtMsdDFwsD_qnlSueMmnYe0kxBibfQi_q3ynxGde4ybpzJiqQ5kqBH6fXYQs8a0XHF73GV0Ia3jUZCnZ-6gDhG5KfBrnwfpsnHHdqXILg-ZzxNhSiOCTjOYQvh2pok9GO3OaMKM5qWkhFA0glh0fUiHMZa-BoOr7lf2d_l8wG5gyNLW4jNWWYj4FjE5-8UJ8eeTZyCyxwSpzNveNdrQfZ3Ul94-O-iT9Hyu05Pvt0bvHmEbvrIC3-O8zFanJxPzRMAdJNs3XfcXy9aR7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+EEG%E2%80%90informed+fMRI+modeling+of+the+pain+matrix+using+20%E2%80%90ms+root+mean+square+segments&rft.jtitle=Human+brain+mapping&rft.au=Brinkmeyer%2C+Juergen&rft.au=Mobascher%2C+Arian&rft.au=Warbrick%2C+Tracy&rft.au=Musso%2C+Francesco&rft.date=2010-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=31&rft.issue=11&rft.spage=1702&rft.epage=1712&rft_id=info:doi/10.1002%2Fhbm.20967&rft.externalDBID=10.1002%252Fhbm.20967&rft.externalDocID=HBM20967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon