Computed Tomography–Based Stiffness Measures of Trabecular Bone Microstructure: Cadaveric Validation and In Vivo Application

ABSTRACT Osteoporosis causes bone fragility and elevates fracture risk. Applications of finite element (FE) analysis (FEA) for assessment of trabecular bone (Tb) microstructural strength at whole‐body computed tomography (CT) imaging are limited due to challenges with Tb microstructural segmentation...

Full description

Saved in:
Bibliographic Details
Published inJBMR plus Vol. 6; no. 6; pp. e10627 - n/a
Main Authors Guha, Indranil, Zhang, Xialiou, Rajapakse, Chamith S., Letuchy, Elena M., Chang, Gregory, Janz, Kathleen F., Torner, James C., Levy, Steven M., Saha, Punam K.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2022
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Osteoporosis causes bone fragility and elevates fracture risk. Applications of finite element (FE) analysis (FEA) for assessment of trabecular bone (Tb) microstructural strength at whole‐body computed tomography (CT) imaging are limited due to challenges with Tb microstructural segmentation. We present a nonlinear FEA method for distal tibia CT scans evading binary segmentation of Tb microstructure, while accounting for bone microstructural distribution. First, the tibial axis in a CT scan was aligned with the FE loading axis. FE cubic mesh elements were modeled using image voxels, and CT intensity values were calibrated to ash density defining mechanical properties at individual elements. For FEA of an upright volume of interest (VOI), the bottom surface was fixed, and a constant displacement was applied at each vertex on the top surface simulating different loading conditions. The method was implemented and optimized using the ANSYS software. CT‐derived computational modulus values were repeat scan reproducible (intraclass correlation coefficient [ICC] ≥ 0.97) and highly correlated (r ≥ 0.86) with the micro‐CT (μCT)‐derived values. FEA‐derived von Mises stresses over the segmented Tb microregion were significantly higher (p < 1 × 10−11) than that over the marrow space. In vivo results showed that both shear and compressive modulus for males were higher (p < 0.01) than for females. Effect sizes for different modulus measures between males and females were moderate‐to‐high (≥0.55) and reduced to small‐to‐negligible (<0.40) when adjusted for pure lean mass. Among body size and composition attributes, pure lean mass and height showed highest (r ∈ [0.45 0.56]) and lowest (r ∈ [0.25 0.39]) linear correlation, respectively, with FE‐derived modulus measures. In summary, CT‐based nonlinear FEA provides an effective surrogate measure of Tb microstructural stiffness, and the relaxation of binary segmentation will extend the scope for FEA in human studies using in vivo imaging at relatively low‐resolution. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2473-4039
2473-4039
DOI:10.1002/jbm4.10627