Exposure to a hot environment can activate rostral ventrolateral medulla-projecting neurones in the hypothalamic paraventricular nucleus in conscious rats

A major integrative site within the brain for autonomic function is the hypothalamic paraventricular nucleus (PVN). Several studies have suggested that the PVN may be involved in the responses regulating body temperature. Hyperthermia elicits redirection of blood flow from the viscera to the periphe...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology Vol. 93; no. 1; pp. 64 - 74
Main Authors Cham, Joo Lee, Badoer, Emilio
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 01.01.2008
Blackwell Publishing Ltd
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A major integrative site within the brain for autonomic function is the hypothalamic paraventricular nucleus (PVN). Several studies have suggested that the PVN may be involved in the responses regulating body temperature. Hyperthermia elicits redirection of blood flow from the viscera to the periphery and involves changes in sympathetic nerve activity mediated by the central nervous system. The hypothalamic PVN includes neurones that project to the rostral ventrolateral medulla (RVLM), an important autonomic region involved in the tonic regulation of sympathetic nerve activity. This pathway could contribute to the cardiovascular changes induced by hyperthermia. The PVN has a high concentration of nitrergic neurones and it is known that nitric oxide within the brain mediates heat dissipation. Thus the aims of this study were to determine whether RVLM-projecting neurones in the PVN are activated by heat and whether those neurones are also nitrergic. The results show that, compared with control conditions, exposure of conscious rats to a hot environment of 39°C significantly increased the number of neurones containing a Fos-positive nucleus (a marker of activation) and significantly increased the number of activated RVLM-projecting neurones in the PVN. Also, although heating significantly increased the number of activated nitrergic PVN neurones, triple-labelled neurones (i.e. activated, nitrergic and RVLM projecting) in the PVN were rarely observed. The results suggest that RVLM-projecting neurones in the PVN may play a role in responses to heat exposure but these are not nitrergic.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0958-0670
1469-445X
DOI:10.1113/expphysiol.2007.039560