A universal calibration function for determination of soil moisture with cosmic-ray neutrons

A cosmic-ray soil moisture probe is usually calibrated locally using soil samples collected within its support volume. But such calibration may be difficult or impractical, for example when soil contains stones, in presence of bedrock outcrops, in urban environments, or when the probe is used as a r...

Full description

Saved in:
Bibliographic Details
Published inHydrology and earth system sciences Vol. 17; no. 2; pp. 453 - 460
Main Authors Franz, T. E, Zreda, M, Rosolem, R, Ferre, T. P. A
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 01.02.2013
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A cosmic-ray soil moisture probe is usually calibrated locally using soil samples collected within its support volume. But such calibration may be difficult or impractical, for example when soil contains stones, in presence of bedrock outcrops, in urban environments, or when the probe is used as a rover. Here we use the neutron transport code MCNPx with observed soil chemistries and pore water distribution to derive a universal calibration function that can be used in such environments. Reasonable estimates of pore water content can be made from neutron intensity measurements and by using measurements of the other hydrogen pools (water vapor, soil lattice water, soil organic carbon, and biomass). Comparisons with independent soil moisture measurements at one cosmic-ray probe site and, separately, at 35 sites, show that the universal calibration function explains more than 79% of the total variability within each dataset, permitting accurate isolation of the soil moisture signal from the measured neutron intensity signal. In addition the framework allows for any of the other hydrogen pools to be separated from the neutron intensity measurements, which may be useful for estimating changes in biomass, biomass water, or exchangeable water in complex environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1607-7938
1027-5606
1607-7938
DOI:10.5194/hess-17-453-2013