Scheduling problems with two competing agents to minimize minmax and minsum earliness measures

A relatively new class of scheduling problems consists of multiple agents who compete on the use of a common processor. We focus in this paper on a two-agent setting. Each of the agents has a set of jobs to be processed on the same processor, and each of the agents wants to minimize a measure which...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of operational research Vol. 206; no. 3; pp. 540 - 546
Main Authors Mor, Baruch, Mosheiov, Gur
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2010
Elsevier
Elsevier Sequoia S.A
SeriesEuropean Journal of Operational Research
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A relatively new class of scheduling problems consists of multiple agents who compete on the use of a common processor. We focus in this paper on a two-agent setting. Each of the agents has a set of jobs to be processed on the same processor, and each of the agents wants to minimize a measure which depends on the completion times of its own jobs. The goal is to schedule the jobs such that the combined schedule performs well with respect to the measures of both agents. We consider measures of minmax and minsum earliness. Specifically, we focus on minimizing maximum earliness cost or total (weighted) earliness cost of one agent, subject to an upper bound on the maximum earliness cost of the other agent. We introduce a polynomial-time solution for the minmax problem, and prove NP-hardness for the weighted minsum case. The unweighted minsum problem is shown to have a polynomial-time solution.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2010.03.003