Mast Cell-Derived Exosomes Induce Phenotypic and Functional Maturation of Dendritic Cells and Elicit Specific Immune Responses In Vivo

Mast cells (MCs) are considered major players in IgE-mediated allergic responses, but have also recently been recognized as active participants in innate as well as specific immune responses. Recent work provided evidence that MCs are able to activate B and T lymphocytes through the release of vesic...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 170; no. 6; pp. 3037 - 3045
Main Authors Skokos, Dimitris, Botros, Hany Goubran, Demeure, Christian, Morin, Joelle, Peronet, Roger, Birkenmeier, Gerd, Boudaly, Sarah, Mecheri, Salaheddine
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 15.03.2003
Publisher : Baltimore : Williams & Wilkins, c1950-. Latest Publisher : Bethesda, MD : American Association of Immunologists
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mast cells (MCs) are considered major players in IgE-mediated allergic responses, but have also recently been recognized as active participants in innate as well as specific immune responses. Recent work provided evidence that MCs are able to activate B and T lymphocytes through the release of vesicles called exosomes. Here we demonstrate that exosomes, which are located in the endocytic pathway, harbor exogenous Ags that associate with other molecules endowed with immunomodulatory functions, including 60- and 70-kDa heat shock proteins. Administration to naive mice of Ag-containing exosomes in the absence of conventional adjuvants elicits specific Ab responses across the MHC II haplotype barrier. We demonstrate that MC-exosomes induce immature dendritic cells (DCs) to up-regulate MHC class II, CD80, CD86, and CD40 molecules and to acquire potent Ag-presenting capacity to T cells. Uptake and processing of Ag-associated exosomes by endogenous DCs were also demonstrated. Finally, exosome-associated heat shock proteins are critical for the acquisition by DCs of the Ag-presenting function. This work demonstrates a heretofore unrecognized collaborative interaction between MCs and DCs leading to the elicitation of specific immune responses.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.170.6.3037