Fast numerical modeling of multitransmitter electromagnetic data using multigrid quasi-linear approximation

Multitransmitter electromagnetic (EM) surveys are widely used in remote-sensing and geophysical exploration. The interpretation of the multitransmitter geophysical data requires numerous three-dimensional (3-D) modelings of the responses of the receivers for different geoelectrical models of complex...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 44; no. 6; pp. 1428 - 1434
Main Authors Ueda, T., Zhdanov, M.S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multitransmitter electromagnetic (EM) surveys are widely used in remote-sensing and geophysical exploration. The interpretation of the multitransmitter geophysical data requires numerous three-dimensional (3-D) modelings of the responses of the receivers for different geoelectrical models of complex geological formations. In this paper, we introduce a fast method for 3-D modeling of EM data, based on a modified version of quasilinear approximation, which uses a multigrid approach. This method significantly speeds up the modeling of multitransmitter-multireceiver surveys. The developed algorithm has been applied for the interpretation of marine controlled-source electromagnetic (MCSEM) data. We have tested our new method using synthetic problems and for the simulation of MCSEM data for a geoelectrical model of a Gemini salt body.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2006.864386