The Structure of Chaos: An Empirical Comparison of Fractal Physiology Complexity Indices Using NeuroKit2

Complexity quantification, through entropy, information theory and fractal dimension indices, is gaining a renewed traction in psychophsyiology, as new measures with promising qualities emerge from the computational and mathematical advances. Unfortunately, few studies compare the relationship and o...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 8; p. 1036
Main Authors Makowski, Dominique, Te, An Shu, Pham, Tam, Lau, Zen Juen, Chen, S.H. Annabel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Complexity quantification, through entropy, information theory and fractal dimension indices, is gaining a renewed traction in psychophsyiology, as new measures with promising qualities emerge from the computational and mathematical advances. Unfortunately, few studies compare the relationship and objective performance of the plethora of existing metrics, in turn hindering reproducibility, replicability, consistency, and clarity in the field. Using the NeuroKit2 Python software, we computed a list of 112 (predominantly used) complexity indices on signals varying in their characteristics (noise, length and frequency spectrum). We then systematically compared the indices by their computational weight, their representativeness of a multidimensional space of latent dimensions, and empirical proximity with other indices. Based on these considerations, we propose that a selection of 12 indices, together representing 85.97% of the total variance of all indices, might offer a parsimonious and complimentary choice in regards to the quantification of the complexity of time series. Our selection includes CWPEn, Line Length (LL), BubbEn, MSWPEn, MFDFA (Max), Hjorth Complexity, SVDEn, MFDFA (Width), MFDFA (Mean), MFDFA (Peak), MFDFA (Fluctuation), AttEn. Elements of consideration for alternative subsets are discussed, and data, analysis scripts and code for the figures are open-source.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e24081036