The Preparation of Au@TiO2 Yolk–Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue

This paper reports the synthesis of a new type of Au@TiO 2 yolk–shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size an...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 12; no. 1; pp. 1 - 535
Main Authors Wan, Gengping, Peng, Xiange, Zeng, Min, Yu, Lei, Wang, Kan, Li, Xinyue, Wang, Guizhen
Format Journal Article
LanguageEnglish
Published New York Springer US 18.09.2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper reports the synthesis of a new type of Au@TiO 2 yolk–shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO 2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO 2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550–590 nm) which are determined by the size of gold nanoparticles. The Au@TiO 2 yolk–shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO 2 nanotubes, Au@TiO 2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO 2 yolk–shell composites was also performed to investigate the detection sensitivity of MB.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1931-7573
1556-276X
DOI:10.1186/s11671-017-2313-4