A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion

Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2019; no. 2019; pp. 1 - 14
Main Authors Zhao, Zhuoli, Guo, Hongxia, Yang, Ping, Long, Xiafei, Wu, Xiwen
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1070-9622
1875-9203
DOI10.1155/2019/7490750

Cover

Abstract Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of the multisensor data fusion technique and time-domain analysis. First, the derived method calculates the time-domain indices of raw signals, and the fused time-domain indexes dataset are obtained by the multisensor data fusion. Then, the CBA-based KELM recognition model that can identify fault patterns of a wind turbine gearbox (WTB) is automatically established with the fused dataset. The dataset includes a large number of samples involving 6 fault types under different operational conditions by 5 accelerometers. The effectiveness and feasibility of this proposed method are proved by adopting the datasets originated from the test rig, and it achieves a diagnostic accuracy of 96.25%. Finally, compared with the other peer-to-peer methods, the experimental classification results show that the proposed CBA-KELM technique has the best performances.
AbstractList Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of the multisensor data fusion technique and time-domain analysis. First, the derived method calculates the time-domain indices of raw signals, and the fused time- domain indexes dataset are obtained by the multisensor data fusion. Then, the CBA-based KELM recognition model that can identify fault patterns of a wind turbine gearbox (WTB) is automatically established with the fused dataset. The dataset includes a large number of samples involving 6 fault types under different operational conditions by 5 accelerometers. The effectiveness and feasibility of this proposed method are proved by adopting the datasets originated from the test rig, and it achieves a diagnostic accuracy of 96.25%. Finally, compared with the other peer-to-peer methods, the experimental classification results show that the proposed CBA-KELM technique has the best performances.
Audience Academic
Author Yang, Ping
Zhao, Zhuoli
Long, Xiafei
Guo, Hongxia
Wu, Xiwen
Author_xml – sequence: 1
  fullname: Zhao, Zhuoli
– sequence: 2
  fullname: Guo, Hongxia
– sequence: 3
  fullname: Yang, Ping
– sequence: 4
  fullname: Long, Xiafei
– sequence: 5
  fullname: Wu, Xiwen
BookMark eNqFkc9rFDEcxQepYFu9eZaARzttfs_kON3tanEXQRY8Dt9JMrtZZpOazFB68W836xQFQSSHb_jyee8lvIvizAdvi-ItwdeECHFDMVE3FVe4EvhFcU7qSpSKYnaW77jCpZKUviouUjpgjAWT_Lz40aDFbVN-vltvyltI1qCvVoedd6MLHm3suA8G9SGiFUzDiJYOdj4kl1Do0TfnDdpOsXPeJvToxj3auqMtl-EIzqPGw_B0QiFjm6x2yfqUrZYwAlpNKSe8Ll72MCT75nleFtvV3XbxqVx_-Xi_aNalFoSNZVULQ4BjgY0UWIEEyjXBVimmRE0Y11WliOkI00RazCpTYaBGsY6B0j27LO5nWxPg0D5Ed4T41AZw7a9FiLsW4uj0YFvNjZZ11bNOKU5rm4fqqNVYCFEDp9nr_ez1EMP3yaaxPYQp5r-mlhIlOReSs0xdz9QOsqnzfRgj6HyMPTqda-td3jeSMqmk4DwLrmaBjiGlaPvfzyS4PbXbntptn9vNOP0L126EU2k5xw3_En2YRfvcHDy6_0W8m2mbGdvDH5pmmGH2E6xJvRg
CitedBy_id crossref_primary_10_1007_s11071_023_08609_1
crossref_primary_10_1016_j_egyai_2023_100318
crossref_primary_10_1088_1742_6596_2319_1_012014
crossref_primary_10_1155_2021_6315010
crossref_primary_10_3390_s21217319
crossref_primary_10_1109_TIM_2023_3284946
crossref_primary_10_1109_ACCESS_2024_3385229
crossref_primary_10_1007_s40745_023_00497_x
crossref_primary_10_1109_TIE_2019_2942548
crossref_primary_10_3390_e22060685
Cites_doi 10.1016/j.egypro.2015.07.779
10.1155/2014/237102
10.3901/jme.2014.11.009
10.1016/j.neucom.2005.12.126
10.1109/tec.2010.2040083
10.1155/2016/6723267
10.1016/j.energy.2011.07.025
10.1016/j.neucom.2010.02.019
10.1109/5.554205
10.1155/2016/6748469
10.1049/iet-rpg.2011.0168
10.3390/s18010150
10.1016/j.sepro.2011.11.065
10.1016/j.chaos.2015.10.018
10.1007/s13042-011-0019-y
10.1016/j.ymssp.2014.03.006
10.1016/j.egypro.2015.07.737
10.1155/2018/2896850
10.2172/1048981
10.1016/j.renene.2016.01.006
10.1016/j.rser.2015.07.110
10.1155/2016/6423587
10.1002/we.1671
10.1016/j.renene.2015.06.041
10.1002/we.1653
10.4028/www.scientific.net/amm.373-375.1102
10.1016/j.neunet.2014.01.008
10.1016/j.renene.2016.03.025
10.3390/en9060379
10.1155/2016/6971952
10.1080/014311698215748
10.1016/j.isatra.2016.05.009
10.1007/978-3-642-23235-0_3
ContentType Journal Article
Copyright Copyright © 2019 Xiafei Long et al.
COPYRIGHT 2019 John Wiley & Sons, Inc.
Copyright © 2019 Xiafei Long et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2019 Xiafei Long et al.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: Copyright © 2019 Xiafei Long et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1155/2019/7490750
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1875-9203
Editor Zappino, Enrico
Editor_xml – sequence: 1
  givenname: Enrico
  surname: Zappino
  fullname: Zappino, Enrico
EndPage 14
ExternalDocumentID oai_doaj_org_article_c4dc687f3b99428eb999b2ec05558a42
A623696544
10_1155_2019_7490750
1211530
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Science and Technology Support Program
  grantid: 2015BAA06B02
– fundername: Guangdong Science and Technology Department
  grantid: 2016B020245001
– fundername: Operation Fund of Guangdong Key Laboratory of Clean Energy Technology
  grantid: 2017B030314127
GroupedDBID 0R~
123
24P
4.4
5VS
8FE
8FG
AAFNC
AAFWJ
AAJEY
ABDBF
ABJCF
ABJNI
ABUBZ
ACGFS
ACIWK
ACPQW
ADBBV
ADJCN
ADZMO
AENEX
AFKRA
AFPKN
AFRHK
AGIAB
AHFXO
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CAG
CCPQU
COF
DU5
EAD
EAP
EBS
EJD
EMK
EPL
EST
ESX
FEDTE
FRP
GROUPED_DOAJ
H13
HCIFZ
HZ~
I-F
IAO
IL9
IOS
IPNFZ
ITC
KQ8
L6V
M7S
MET
MIO
O9-
OK1
PIMPY
PROAC
PTHSS
RHX
RIG
TUS
~02
RHU
RHW
AAYXX
ACCMX
ACUHS
ADMLS
CITATION
PHGZM
PHGZT
PMFND
7TB
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c513t-785d1a4050d6509a6a24c10e993958134c7791db13c16e037d70a2d93b3a9cf3
IEDL.DBID DOA
ISSN 1070-9622
IngestDate Wed Aug 27 01:31:29 EDT 2025
Fri Jul 25 11:54:12 EDT 2025
Tue Jun 10 21:01:37 EDT 2025
Tue Jul 01 01:21:12 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Sun Jun 02 19:21:11 EDT 2024
Tue Nov 26 17:05:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2019
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-785d1a4050d6509a6a24c10e993958134c7791db13c16e037d70a2d93b3a9cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2531-0614
OpenAccessLink https://doaj.org/article/c4dc687f3b99428eb999b2ec05558a42
PQID 2196445643
PQPubID 2037353
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c4dc687f3b99428eb999b2ec05558a42
proquest_journals_2196445643
gale_infotracacademiconefile_A623696544
crossref_primary_10_1155_2019_7490750
crossref_citationtrail_10_1155_2019_7490750
hindawi_primary_10_1155_2019_7490750
emarefa_primary_1211530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Cairo
PublicationTitle Shock and vibration
PublicationYear 2019
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Zhang X. D. (e_1_2_9_13_2) 2014; 36
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_38_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_36_2
e_1_2_9_18_2
Liu Y. K. (e_1_2_9_15_2) 2013; 35
e_1_2_9_17_2
e_1_2_9_39_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_22_2
Zhang L. W. (e_1_2_9_41_2) 2015; 9
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_1_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
Long X. (e_1_2_9_2_2) 2017; 41
e_1_2_9_26_2
e_1_2_9_29_2
Guo Y. J. (e_1_2_9_30_2) 2015
e_1_2_9_28_2
References_xml – ident: e_1_2_9_24_2
  doi: 10.1016/j.egypro.2015.07.779
– ident: e_1_2_9_39_2
  doi: 10.1155/2014/237102
– ident: e_1_2_9_20_2
  doi: 10.3901/jme.2014.11.009
– ident: e_1_2_9_38_2
  doi: 10.1016/j.neucom.2005.12.126
– ident: e_1_2_9_11_2
  doi: 10.1109/tec.2010.2040083
– ident: e_1_2_9_5_2
  doi: 10.1155/2016/6723267
– ident: e_1_2_9_10_2
  doi: 10.1016/j.energy.2011.07.025
– ident: e_1_2_9_27_2
  doi: 10.1016/j.neucom.2010.02.019
– ident: e_1_2_9_36_2
  doi: 10.1109/5.554205
– ident: e_1_2_9_4_2
  doi: 10.1155/2016/6748469
– volume: 35
  start-page: 583
  year: 2013
  ident: e_1_2_9_15_2
  article-title: Fault diagonsis approach for wind turbine based on signed directed graph
  publication-title: Journal of Mechanical Strength
– ident: e_1_2_9_34_2
– ident: e_1_2_9_8_2
  doi: 10.1049/iet-rpg.2011.0168
– ident: e_1_2_9_19_2
  doi: 10.3390/s18010150
– ident: e_1_2_9_14_2
  doi: 10.1016/j.sepro.2011.11.065
– ident: e_1_2_9_17_2
  doi: 10.1016/j.chaos.2015.10.018
– ident: e_1_2_9_28_2
  doi: 10.1007/s13042-011-0019-y
– ident: e_1_2_9_9_2
  doi: 10.1016/j.ymssp.2014.03.006
– ident: e_1_2_9_25_2
  doi: 10.1016/j.egypro.2015.07.737
– ident: e_1_2_9_1_2
  doi: 10.1155/2018/2896850
– volume: 36
  start-page: 21
  year: 2014
  ident: e_1_2_9_13_2
  article-title: Research on fault diagnosis expert system of wind turbine
  publication-title: Manufacturing Automation
– volume-title: Research on Angular-Domain Vibration Signal Processing and Fault Diagnosis Methods for Wind Turbine Gearbox
  year: 2015
  ident: e_1_2_9_30_2
– ident: e_1_2_9_35_2
  doi: 10.2172/1048981
– ident: e_1_2_9_12_2
  doi: 10.1016/j.renene.2016.01.006
– ident: e_1_2_9_3_2
  doi: 10.1016/j.rser.2015.07.110
– ident: e_1_2_9_6_2
  doi: 10.1155/2016/6423587
– ident: e_1_2_9_31_2
  doi: 10.1002/we.1671
– ident: e_1_2_9_32_2
  doi: 10.1016/j.renene.2015.06.041
– volume: 9
  start-page: 1003
  year: 2015
  ident: e_1_2_9_41_2
  article-title: Fault diagnosis of power transformers using kernel based extreme learning machine with particle swarm optimization
  publication-title: Applied Mathematics & Information Sciences
– ident: e_1_2_9_33_2
– ident: e_1_2_9_18_2
  doi: 10.1002/we.1653
– ident: e_1_2_9_22_2
  doi: 10.4028/www.scientific.net/amm.373-375.1102
– ident: e_1_2_9_29_2
  doi: 10.1016/j.neunet.2014.01.008
– ident: e_1_2_9_7_2
  doi: 10.1016/j.renene.2016.03.025
– ident: e_1_2_9_26_2
  doi: 10.3390/en9060379
– ident: e_1_2_9_16_2
  doi: 10.1155/2016/6971952
– ident: e_1_2_9_37_2
  doi: 10.1080/014311698215748
– ident: e_1_2_9_40_2
– ident: e_1_2_9_21_2
  doi: 10.1016/j.isatra.2016.05.009
– ident: e_1_2_9_23_2
  doi: 10.1007/978-3-642-23235-0_3
– volume: 41
  start-page: 3480
  year: 2017
  ident: e_1_2_9_2_2
  article-title: Review of fault diagnosis methods for large wind turbines
  publication-title: Power System Technology
SSID ssj0005364
Score 2.2712483
Snippet Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis...
SourceID doaj
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accelerometers
Air-turbines
Algorithms
Alternative energy sources
Analysis
Artificial intelligence
Data integration
Diagnostic systems
Environmental conditions
Fault diagnosis
Fuzzy logic
Gearboxes
Machine learning
Methods
Multisensor fusion
Neural networks
Noise
Remote sensing
Signal processing
Time domain analysis
Turbines
Vibration
Wavelet transforms
Wind power
Wind turbines
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYpElwQDC-CgP5MMQBRcR2nNjHdl1VAeUwFdGbZTuOVmmkaEnFjb-d91ynAyYEp8iRYzt57_l95Pn3CDllygapHDCvcHkGGgpkLg8-06XPecAC0jE0sPhUzj8X71dylUCSutu_8EHbgXvO9Luq0KjcDsiBKpF5L-arm0wOEVGiwJHJYQ7Oh_z2P579TfNEgP54CtdC2-435KNLdIW_r29tzVHfzB6Q-8lQpOMdZR-SO6E9Jvd-gQ88JkcxfdN3j8iPMT2bjLMP5x8X2QT0Uk0vhsSgTUsXsUo0BfOUzuz2qqfTXX7duqObhn6BpdDl9tphAjzFuCzFcyHZdPPVrls6oJZQC93icd0OPF8Yamp7S2dbjLY9JsvZ-fJsnqXKCpmXTPRZpWTNLNhqeY0Iera0vPAsD2CsaKmYKHxVaVY7JjwrQy6qusotr7VwwmrfiCfksN204RmhDpRdU1mhglaF4jAoa1gVcqfAlAqlGJG3w0c3PqGOY_GLKxO9DykNksgkEo3I633vbzu0jb_0myD99n0QIzveAL4xSeSML2pfqqoRTmtwsgJctOPBR4gzW_AReZqofzMXuMNSwPBvkBsMyjgs1tt0VAFeGdGyzBhsxlKXsihG5DQxzD_WezJwk0l7RGc4YqEhmo94_n-jvCB3sbkLAJ2Qw_56G16CSdS7V1EgfgInR_yi
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGpknwMMGA0TGQH4Z4QFHjOE7sB4TatdUEtEJTEXuzHMeBSiMZbSre-Nu5c50WhICnKInlXOLzfeXud4ScM2mckAUwLy_iCDQU7LnY2UhlNk4cNpD2oYHpLLv8mL69Ftd7ZNbVwmBaZScTvaAuG4sx8n6CyFGIfcLf3H6LsGsU_l3tWmiY0FqhfO0hxu6QAxDJEvj-YDiefbjaJX1wDygFPk8M5CRJlwovRB80oernqUId-puS8lj-vmDXwLnZyu7DL-g1f1_8IcW9aprcJ0fBpqSDDRM8IHuuPib3fkEaPCaHPtPTrh6SHwN6MRxE78bvp9EQVFhJr7ocoqamU99QmoIlSydmfdPS0SYVb7GiTUU_ASl0vl4WmCtPMYRLsYQkGjVfzaKmHcAJNTDMV_auwEmGqUamNXSyxsDcIzKfjOcXl1FowhBZwXgb5VKUzIBZF5cItmcyk6SWxQ7sGiUk46nNc8XKgnHLMhfzvMxjk5SKF9woW_HHZL9uaveE0AL0YpUbLp2SqUxgUlax3MWFBKvLZbxHXnUfXdsAUI59Mm60d1SE0LhEOixRj7zYjr7dAHP8ZdwQ1287BuG0_YVm-VmH3altWtpM5hUvlAJ_zMFBFYmzHg3NpEmPnITV3z0LPGfBYfqXyA0axQEQa02oaoBXRmAtPQDzMlOZSNMeOQ8M8x96zzpu0kGcrPSO-U__ffspuYuTbWJEZ2S_Xa7dM7Ca2uJ52Ao_Adx8DXY
  priority: 102
  providerName: ProQuest
Title A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion
URI https://search.emarefa.net/detail/BIM-1211530
https://dx.doi.org/10.1155/2019/7490750
https://www.proquest.com/docview/2196445643
https://doaj.org/article/c4dc687f3b99428eb999b2ec05558a42
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgaBI8IBhfhVH5YYgHFM2O49h-bNeGCuiEqiL6ZtmOo1Ua6bSm2ht_O2cnKUMI7YWXRIlO9tl39t1Z598hdEKl8VxaUF5mSQIWCtYc8S5RuSOpDwWk49HA_Dyffcs-rfjqVqmvkBPWwgO3E3fqstLlUlTMKgWusoeXsql3EajKZHH3JYr0wVSf3MEicBTENgS6TdM-5Z1ziPapOhWZCrbyD2MUMfvjxVwD32a_Rx9ehOj4Zv3Xbh1NUPEEPe58RzxqeX6K7vn6CD26hSh4hA5jRqfbPkM_R_hsPEo-T7_MkzGYqhIv-lyhTY3nsXA0Bo8VF2Z32eBJm3K33uJNhb8DK3i5u7YhJx6Ho1ocrookk80Ps65xD2SCDZDFG7xbCIahqYlpDC524QDuOVoW0-XZLOmKLSSOU9YkQvKSGnDfSBlA9Uxu0sxR4sF_UVxSljkhFC0tZY7mnjBRCmLSUjHLjHIVe4EO6k3tXyFswf5VwjDplcxkCo3SigpPrATvyudsgD70k65dB0Qe6mFc6hiQcK6DiHQnogF6t6e-agE4_kE3DvLb0wTY7PgDlEl3yqTvUqYBetlJ_3dfECFzBs2_D9qgw7IHZp3pbi_AkAOAlh6BG5mrnGfZAJ10CnMHv8e9Nulu29jqNMCjBYAf9vp_DOcNehi6bE-MjtFBc73zb8GHauwQ3ZfFxyF6MJ6ef10M4-KB52K2-gVeaBLa
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVBVwQFBegQJ7aMUBWbF3vbb3UKGkSZSSh1AVRG-r9XpDI7VxyUMVF_4Z_42ZzToBIeDUU-RkNV5nZuflmW8IOYwybUWWg_DyPAzAQsGZC60JZGJCZnGAtEsNDEdJ71P84Vyc75AfVS8MllVWOtEp6qI0mCNvMESOQuwT_v76a4BTo_DtajVCQ_vRCsWxgxjzjR19--0GQrjF8Wkb-H3EWLczPukFfspAYETEl0GaiSLS4LeEBaLJ6USz2EShBcMtRRbx2KSpjIo84iZKbMjTIg01KyTPuZZmwoHsHbIbY4Nrjey2OqOPZ9saE-7wqyDECuHpGasq74VogOGVjTSWaLJ_s4ludIDrD9ZwrTemYu8Cg_Sb6R9Gw1nC7kPywLuwtLmWuUdkx872yf1fgA33yZ4rLDWLx-R7k560mkG_MxgGLbCYBT2rSpbKGR26-dUUHGfa1avLJW2vK_-mC1pO6GfYCh2v5jmW5lPMGFPsWAna5ZWezmiFp0I1LHONxAuIyYFUWy817a4wD_iEjG-DG09JbVbO7HNCczDDk1TzzMoszhgQjSZRasM8AyfPJrxO3lV_ujIeDx3HclwqFxcJoZBFyrOoTo42q6_XOCB_WddC_m3WIHq3-6Kcf1FeGSgTFybJ0gnPpYTwz8KHzJk1DnxNx6xOnnnub-8FgbrgQP4tSoNC7QObNdo3UcAjI46XaoI3m8hExHGdHHqB-c9-DyppUl57LdT2rL34989vyN3eeDhQg9NR_yW5h4TX6akDUlvOV_YVOGzL_LU_FpSoWz6IPwG-YEfJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGpyF4QDAYFAb4YRMPKGpix0n8MKF2bbXRtZqmIvZmOY4DlUYz-kMTL_x__FfcuU4LQsDTnqq01sXN-fzdOXffEXIQZdqKLIfFy_MwAIQCmwutCWRiQmaxgbQ7GhiOkpMP8ftLcblFftS1MJhWWe-JbqMuKoNn5C2GzFHIfcJbpU-LOO_2311_DbCDFL5prdtpaN9moThydGO-yGNgv91AODc_Ou2C7g8Z6_fGxyeB7zgQGBHxRZBmoog0-DBhgcxyOtEsNlFoAcSlyCIemzSVUZFH3ESJDXlapKFmheQ519KUHMTeIdspgGTcINud3uj8YpNvwh2XFYRbITwJxuosfCFaAMKylcYS4fs3fHRtBFytsIZrvYaNnc8YsN9M_gAQh4r9h-SBd2dpe7X-HpEtO90l938hOdwlOy7J1Mwfk-9tetxpB4Pe2TDoAHoW9KJOX6qmdOh6WVNwomlfL68WtLvKApzMaVXSjzAVOl7OckzTp3h6TLF6JehWX_RkSmtuFaphmCsqnkN8DqK6eqFpf4lngk_I-Da0sUca02pqnxGaAySXqeaZlVmcMRAalVFqwzwDh88mvEne1g9dGc-Nji06rpSLkYRQqCLlVdQkh-vR1ytOkL-M66D-1mOQydt9Uc0-Kb8xKBMXJsnSkudSQiho4UPmzBpHxKZj1iRPvfY394KgXXAQ_wZXg8KdCCZrtC-ogL-MnF6qDZ5tIhMRx01y4BfMf-a7X68m5XeyudrY3fN___ya3AWDVGeno8ELcg_lrk6q9kljMVval-C7LfJX3iooUbdshz8BZXlL9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CBA-KELM-Based+Recognition+Method+for+Fault+Diagnosis+of+Wind+Turbines+with+Time-Domain+Analysis+and+Multisensor+Data+Fusion&rft.jtitle=Shock+and+vibration&rft.au=Xiafei+Long&rft.au=Ping+Yang&rft.au=Hongxia+Guo&rft.au=Zhuoli+Zhao&rft.date=2019-01-01&rft.pub=Wiley&rft.issn=1070-9622&rft.eissn=1875-9203&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F7490750&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c4dc687f3b99428eb999b2ec05558a42
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9622&client=summon