A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion
Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of...
Saved in:
Published in | Shock and vibration Vol. 2019; no. 2019; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2019
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1070-9622 1875-9203 |
DOI | 10.1155/2019/7490750 |
Cover
Abstract | Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of the multisensor data fusion technique and time-domain analysis. First, the derived method calculates the time-domain indices of raw signals, and the fused time-domain indexes dataset are obtained by the multisensor data fusion. Then, the CBA-based KELM recognition model that can identify fault patterns of a wind turbine gearbox (WTB) is automatically established with the fused dataset. The dataset includes a large number of samples involving 6 fault types under different operational conditions by 5 accelerometers. The effectiveness and feasibility of this proposed method are proved by adopting the datasets originated from the test rig, and it achieves a diagnostic accuracy of 96.25%. Finally, compared with the other peer-to-peer methods, the experimental classification results show that the proposed CBA-KELM technique has the best performances. |
---|---|
AbstractList | Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of the multisensor data fusion technique and time-domain analysis. First, the derived method calculates the time-domain indices of raw signals, and the fused time- domain indexes dataset are obtained by the multisensor data fusion. Then, the CBA-based KELM recognition model that can identify fault patterns of a wind turbine gearbox (WTB) is automatically established with the fused dataset. The dataset includes a large number of samples involving 6 fault types under different operational conditions by 5 accelerometers. The effectiveness and feasibility of this proposed method are proved by adopting the datasets originated from the test rig, and it achieves a diagnostic accuracy of 96.25%. Finally, compared with the other peer-to-peer methods, the experimental classification results show that the proposed CBA-KELM technique has the best performances. |
Audience | Academic |
Author | Yang, Ping Zhao, Zhuoli Long, Xiafei Guo, Hongxia Wu, Xiwen |
Author_xml | – sequence: 1 fullname: Zhao, Zhuoli – sequence: 2 fullname: Guo, Hongxia – sequence: 3 fullname: Yang, Ping – sequence: 4 fullname: Long, Xiafei – sequence: 5 fullname: Wu, Xiwen |
BookMark | eNqFkc9rFDEcxQepYFu9eZaARzttfs_kON3tanEXQRY8Dt9JMrtZZpOazFB68W836xQFQSSHb_jyee8lvIvizAdvi-ItwdeECHFDMVE3FVe4EvhFcU7qSpSKYnaW77jCpZKUviouUjpgjAWT_Lz40aDFbVN-vltvyltI1qCvVoedd6MLHm3suA8G9SGiFUzDiJYOdj4kl1Do0TfnDdpOsXPeJvToxj3auqMtl-EIzqPGw_B0QiFjm6x2yfqUrZYwAlpNKSe8Ll72MCT75nleFtvV3XbxqVx_-Xi_aNalFoSNZVULQ4BjgY0UWIEEyjXBVimmRE0Y11WliOkI00RazCpTYaBGsY6B0j27LO5nWxPg0D5Ed4T41AZw7a9FiLsW4uj0YFvNjZZ11bNOKU5rm4fqqNVYCFEDp9nr_ez1EMP3yaaxPYQp5r-mlhIlOReSs0xdz9QOsqnzfRgj6HyMPTqda-td3jeSMqmk4DwLrmaBjiGlaPvfzyS4PbXbntptn9vNOP0L126EU2k5xw3_En2YRfvcHDy6_0W8m2mbGdvDH5pmmGH2E6xJvRg |
CitedBy_id | crossref_primary_10_1007_s11071_023_08609_1 crossref_primary_10_1016_j_egyai_2023_100318 crossref_primary_10_1088_1742_6596_2319_1_012014 crossref_primary_10_1155_2021_6315010 crossref_primary_10_3390_s21217319 crossref_primary_10_1109_TIM_2023_3284946 crossref_primary_10_1109_ACCESS_2024_3385229 crossref_primary_10_1007_s40745_023_00497_x crossref_primary_10_1109_TIE_2019_2942548 crossref_primary_10_3390_e22060685 |
Cites_doi | 10.1016/j.egypro.2015.07.779 10.1155/2014/237102 10.3901/jme.2014.11.009 10.1016/j.neucom.2005.12.126 10.1109/tec.2010.2040083 10.1155/2016/6723267 10.1016/j.energy.2011.07.025 10.1016/j.neucom.2010.02.019 10.1109/5.554205 10.1155/2016/6748469 10.1049/iet-rpg.2011.0168 10.3390/s18010150 10.1016/j.sepro.2011.11.065 10.1016/j.chaos.2015.10.018 10.1007/s13042-011-0019-y 10.1016/j.ymssp.2014.03.006 10.1016/j.egypro.2015.07.737 10.1155/2018/2896850 10.2172/1048981 10.1016/j.renene.2016.01.006 10.1016/j.rser.2015.07.110 10.1155/2016/6423587 10.1002/we.1671 10.1016/j.renene.2015.06.041 10.1002/we.1653 10.4028/www.scientific.net/amm.373-375.1102 10.1016/j.neunet.2014.01.008 10.1016/j.renene.2016.03.025 10.3390/en9060379 10.1155/2016/6971952 10.1080/014311698215748 10.1016/j.isatra.2016.05.009 10.1007/978-3-642-23235-0_3 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Xiafei Long et al. COPYRIGHT 2019 John Wiley & Sons, Inc. Copyright © 2019 Xiafei Long et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2019 Xiafei Long et al. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc. – notice: Copyright © 2019 Xiafei Long et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1155/2019/7490750 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1875-9203 |
Editor | Zappino, Enrico |
Editor_xml | – sequence: 1 givenname: Enrico surname: Zappino fullname: Zappino, Enrico |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_c4dc687f3b99428eb999b2ec05558a42 A623696544 10_1155_2019_7490750 1211530 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Science and Technology Support Program grantid: 2015BAA06B02 – fundername: Guangdong Science and Technology Department grantid: 2016B020245001 – fundername: Operation Fund of Guangdong Key Laboratory of Clean Energy Technology grantid: 2017B030314127 |
GroupedDBID | 0R~ 123 24P 4.4 5VS 8FE 8FG AAFNC AAFWJ AAJEY ABDBF ABJCF ABJNI ABUBZ ACGFS ACIWK ACPQW ADBBV ADJCN ADZMO AENEX AFKRA AFPKN AFRHK AGIAB AHFXO ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CAG CCPQU COF DU5 EAD EAP EBS EJD EMK EPL EST ESX FEDTE FRP GROUPED_DOAJ H13 HCIFZ HZ~ I-F IAO IL9 IOS IPNFZ ITC KQ8 L6V M7S MET MIO O9- OK1 PIMPY PROAC PTHSS RHX RIG TUS ~02 RHU RHW AAYXX ACCMX ACUHS ADMLS CITATION PHGZM PHGZT PMFND 7TB 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c513t-785d1a4050d6509a6a24c10e993958134c7791db13c16e037d70a2d93b3a9cf3 |
IEDL.DBID | DOA |
ISSN | 1070-9622 |
IngestDate | Wed Aug 27 01:31:29 EDT 2025 Fri Jul 25 11:54:12 EDT 2025 Tue Jun 10 21:01:37 EDT 2025 Tue Jul 01 01:21:12 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Sun Jun 02 19:21:11 EDT 2024 Tue Nov 26 17:05:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2019 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-785d1a4050d6509a6a24c10e993958134c7791db13c16e037d70a2d93b3a9cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2531-0614 |
OpenAccessLink | https://doaj.org/article/c4dc687f3b99428eb999b2ec05558a42 |
PQID | 2196445643 |
PQPubID | 2037353 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c4dc687f3b99428eb999b2ec05558a42 proquest_journals_2196445643 gale_infotracacademiconefile_A623696544 crossref_primary_10_1155_2019_7490750 crossref_citationtrail_10_1155_2019_7490750 hindawi_primary_10_1155_2019_7490750 emarefa_primary_1211530 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Cairo |
PublicationTitle | Shock and vibration |
PublicationYear | 2019 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 Zhang X. D. (e_1_2_9_13_2) 2014; 36 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_38_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_36_2 e_1_2_9_18_2 Liu Y. K. (e_1_2_9_15_2) 2013; 35 e_1_2_9_17_2 e_1_2_9_39_2 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_23_2 e_1_2_9_22_2 Zhang L. W. (e_1_2_9_41_2) 2015; 9 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_1_2 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 Long X. (e_1_2_9_2_2) 2017; 41 e_1_2_9_26_2 e_1_2_9_29_2 Guo Y. J. (e_1_2_9_30_2) 2015 e_1_2_9_28_2 |
References_xml | – ident: e_1_2_9_24_2 doi: 10.1016/j.egypro.2015.07.779 – ident: e_1_2_9_39_2 doi: 10.1155/2014/237102 – ident: e_1_2_9_20_2 doi: 10.3901/jme.2014.11.009 – ident: e_1_2_9_38_2 doi: 10.1016/j.neucom.2005.12.126 – ident: e_1_2_9_11_2 doi: 10.1109/tec.2010.2040083 – ident: e_1_2_9_5_2 doi: 10.1155/2016/6723267 – ident: e_1_2_9_10_2 doi: 10.1016/j.energy.2011.07.025 – ident: e_1_2_9_27_2 doi: 10.1016/j.neucom.2010.02.019 – ident: e_1_2_9_36_2 doi: 10.1109/5.554205 – ident: e_1_2_9_4_2 doi: 10.1155/2016/6748469 – volume: 35 start-page: 583 year: 2013 ident: e_1_2_9_15_2 article-title: Fault diagonsis approach for wind turbine based on signed directed graph publication-title: Journal of Mechanical Strength – ident: e_1_2_9_34_2 – ident: e_1_2_9_8_2 doi: 10.1049/iet-rpg.2011.0168 – ident: e_1_2_9_19_2 doi: 10.3390/s18010150 – ident: e_1_2_9_14_2 doi: 10.1016/j.sepro.2011.11.065 – ident: e_1_2_9_17_2 doi: 10.1016/j.chaos.2015.10.018 – ident: e_1_2_9_28_2 doi: 10.1007/s13042-011-0019-y – ident: e_1_2_9_9_2 doi: 10.1016/j.ymssp.2014.03.006 – ident: e_1_2_9_25_2 doi: 10.1016/j.egypro.2015.07.737 – ident: e_1_2_9_1_2 doi: 10.1155/2018/2896850 – volume: 36 start-page: 21 year: 2014 ident: e_1_2_9_13_2 article-title: Research on fault diagnosis expert system of wind turbine publication-title: Manufacturing Automation – volume-title: Research on Angular-Domain Vibration Signal Processing and Fault Diagnosis Methods for Wind Turbine Gearbox year: 2015 ident: e_1_2_9_30_2 – ident: e_1_2_9_35_2 doi: 10.2172/1048981 – ident: e_1_2_9_12_2 doi: 10.1016/j.renene.2016.01.006 – ident: e_1_2_9_3_2 doi: 10.1016/j.rser.2015.07.110 – ident: e_1_2_9_6_2 doi: 10.1155/2016/6423587 – ident: e_1_2_9_31_2 doi: 10.1002/we.1671 – ident: e_1_2_9_32_2 doi: 10.1016/j.renene.2015.06.041 – volume: 9 start-page: 1003 year: 2015 ident: e_1_2_9_41_2 article-title: Fault diagnosis of power transformers using kernel based extreme learning machine with particle swarm optimization publication-title: Applied Mathematics & Information Sciences – ident: e_1_2_9_33_2 – ident: e_1_2_9_18_2 doi: 10.1002/we.1653 – ident: e_1_2_9_22_2 doi: 10.4028/www.scientific.net/amm.373-375.1102 – ident: e_1_2_9_29_2 doi: 10.1016/j.neunet.2014.01.008 – ident: e_1_2_9_7_2 doi: 10.1016/j.renene.2016.03.025 – ident: e_1_2_9_26_2 doi: 10.3390/en9060379 – ident: e_1_2_9_16_2 doi: 10.1155/2016/6971952 – ident: e_1_2_9_37_2 doi: 10.1080/014311698215748 – ident: e_1_2_9_40_2 – ident: e_1_2_9_21_2 doi: 10.1016/j.isatra.2016.05.009 – ident: e_1_2_9_23_2 doi: 10.1007/978-3-642-23235-0_3 – volume: 41 start-page: 3480 year: 2017 ident: e_1_2_9_2_2 article-title: Review of fault diagnosis methods for large wind turbines publication-title: Power System Technology |
SSID | ssj0005364 |
Score | 2.2712483 |
Snippet | Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accelerometers Air-turbines Algorithms Alternative energy sources Analysis Artificial intelligence Data integration Diagnostic systems Environmental conditions Fault diagnosis Fuzzy logic Gearboxes Machine learning Methods Multisensor fusion Neural networks Noise Remote sensing Signal processing Time domain analysis Turbines Vibration Wavelet transforms Wind power Wind turbines |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYpElwQDC-CgP5MMQBRcR2nNjHdl1VAeUwFdGbZTuOVmmkaEnFjb-d91ynAyYEp8iRYzt57_l95Pn3CDllygapHDCvcHkGGgpkLg8-06XPecAC0jE0sPhUzj8X71dylUCSutu_8EHbgXvO9Luq0KjcDsiBKpF5L-arm0wOEVGiwJHJYQ7Oh_z2P579TfNEgP54CtdC2-435KNLdIW_r29tzVHfzB6Q-8lQpOMdZR-SO6E9Jvd-gQ88JkcxfdN3j8iPMT2bjLMP5x8X2QT0Uk0vhsSgTUsXsUo0BfOUzuz2qqfTXX7duqObhn6BpdDl9tphAjzFuCzFcyHZdPPVrls6oJZQC93icd0OPF8Yamp7S2dbjLY9JsvZ-fJsnqXKCpmXTPRZpWTNLNhqeY0Iera0vPAsD2CsaKmYKHxVaVY7JjwrQy6qusotr7VwwmrfiCfksN204RmhDpRdU1mhglaF4jAoa1gVcqfAlAqlGJG3w0c3PqGOY_GLKxO9DykNksgkEo3I633vbzu0jb_0myD99n0QIzveAL4xSeSML2pfqqoRTmtwsgJctOPBR4gzW_AReZqofzMXuMNSwPBvkBsMyjgs1tt0VAFeGdGyzBhsxlKXsihG5DQxzD_WezJwk0l7RGc4YqEhmo94_n-jvCB3sbkLAJ2Qw_56G16CSdS7V1EgfgInR_yi priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGpknwMMGA0TGQH4Z4QFHjOE7sB4TatdUEtEJTEXuzHMeBSiMZbSre-Nu5c50WhICnKInlXOLzfeXud4ScM2mckAUwLy_iCDQU7LnY2UhlNk4cNpD2oYHpLLv8mL69Ftd7ZNbVwmBaZScTvaAuG4sx8n6CyFGIfcLf3H6LsGsU_l3tWmiY0FqhfO0hxu6QAxDJEvj-YDiefbjaJX1wDygFPk8M5CRJlwovRB80oernqUId-puS8lj-vmDXwLnZyu7DL-g1f1_8IcW9aprcJ0fBpqSDDRM8IHuuPib3fkEaPCaHPtPTrh6SHwN6MRxE78bvp9EQVFhJr7ocoqamU99QmoIlSydmfdPS0SYVb7GiTUU_ASl0vl4WmCtPMYRLsYQkGjVfzaKmHcAJNTDMV_auwEmGqUamNXSyxsDcIzKfjOcXl1FowhBZwXgb5VKUzIBZF5cItmcyk6SWxQ7sGiUk46nNc8XKgnHLMhfzvMxjk5SKF9woW_HHZL9uaveE0AL0YpUbLp2SqUxgUlax3MWFBKvLZbxHXnUfXdsAUI59Mm60d1SE0LhEOixRj7zYjr7dAHP8ZdwQ1287BuG0_YVm-VmH3altWtpM5hUvlAJ_zMFBFYmzHg3NpEmPnITV3z0LPGfBYfqXyA0axQEQa02oaoBXRmAtPQDzMlOZSNMeOQ8M8x96zzpu0kGcrPSO-U__ffspuYuTbWJEZ2S_Xa7dM7Ca2uJ52Ao_Adx8DXY priority: 102 providerName: ProQuest |
Title | A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion |
URI | https://search.emarefa.net/detail/BIM-1211530 https://dx.doi.org/10.1155/2019/7490750 https://www.proquest.com/docview/2196445643 https://doaj.org/article/c4dc687f3b99428eb999b2ec05558a42 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgaBI8IBhfhVH5YYgHFM2O49h-bNeGCuiEqiL6ZtmOo1Ua6bSm2ht_O2cnKUMI7YWXRIlO9tl39t1Z598hdEKl8VxaUF5mSQIWCtYc8S5RuSOpDwWk49HA_Dyffcs-rfjqVqmvkBPWwgO3E3fqstLlUlTMKgWusoeXsql3EajKZHH3JYr0wVSf3MEicBTENgS6TdM-5Z1ziPapOhWZCrbyD2MUMfvjxVwD32a_Rx9ehOj4Zv3Xbh1NUPEEPe58RzxqeX6K7vn6CD26hSh4hA5jRqfbPkM_R_hsPEo-T7_MkzGYqhIv-lyhTY3nsXA0Bo8VF2Z32eBJm3K33uJNhb8DK3i5u7YhJx6Ho1ocrookk80Ps65xD2SCDZDFG7xbCIahqYlpDC524QDuOVoW0-XZLOmKLSSOU9YkQvKSGnDfSBlA9Uxu0sxR4sF_UVxSljkhFC0tZY7mnjBRCmLSUjHLjHIVe4EO6k3tXyFswf5VwjDplcxkCo3SigpPrATvyudsgD70k65dB0Qe6mFc6hiQcK6DiHQnogF6t6e-agE4_kE3DvLb0wTY7PgDlEl3yqTvUqYBetlJ_3dfECFzBs2_D9qgw7IHZp3pbi_AkAOAlh6BG5mrnGfZAJ10CnMHv8e9Nulu29jqNMCjBYAf9vp_DOcNehi6bE-MjtFBc73zb8GHauwQ3ZfFxyF6MJ6ef10M4-KB52K2-gVeaBLa |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVBVwQFBegQJ7aMUBWbF3vbb3UKGkSZSSh1AVRG-r9XpDI7VxyUMVF_4Z_42ZzToBIeDUU-RkNV5nZuflmW8IOYwybUWWg_DyPAzAQsGZC60JZGJCZnGAtEsNDEdJ71P84Vyc75AfVS8MllVWOtEp6qI0mCNvMESOQuwT_v76a4BTo_DtajVCQ_vRCsWxgxjzjR19--0GQrjF8Wkb-H3EWLczPukFfspAYETEl0GaiSLS4LeEBaLJ6USz2EShBcMtRRbx2KSpjIo84iZKbMjTIg01KyTPuZZmwoHsHbIbY4Nrjey2OqOPZ9saE-7wqyDECuHpGasq74VogOGVjTSWaLJ_s4ludIDrD9ZwrTemYu8Cg_Sb6R9Gw1nC7kPywLuwtLmWuUdkx872yf1fgA33yZ4rLDWLx-R7k560mkG_MxgGLbCYBT2rSpbKGR26-dUUHGfa1avLJW2vK_-mC1pO6GfYCh2v5jmW5lPMGFPsWAna5ZWezmiFp0I1LHONxAuIyYFUWy817a4wD_iEjG-DG09JbVbO7HNCczDDk1TzzMoszhgQjSZRasM8AyfPJrxO3lV_ujIeDx3HclwqFxcJoZBFyrOoTo42q6_XOCB_WddC_m3WIHq3-6Kcf1FeGSgTFybJ0gnPpYTwz8KHzJk1DnxNx6xOnnnub-8FgbrgQP4tSoNC7QObNdo3UcAjI46XaoI3m8hExHGdHHqB-c9-DyppUl57LdT2rL34989vyN3eeDhQg9NR_yW5h4TX6akDUlvOV_YVOGzL_LU_FpSoWz6IPwG-YEfJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGpyF4QDAYFAb4YRMPKGpix0n8MKF2bbXRtZqmIvZmOY4DlUYz-kMTL_x__FfcuU4LQsDTnqq01sXN-fzdOXffEXIQZdqKLIfFy_MwAIQCmwutCWRiQmaxgbQ7GhiOkpMP8ftLcblFftS1MJhWWe-JbqMuKoNn5C2GzFHIfcJbpU-LOO_2311_DbCDFL5prdtpaN9moThydGO-yGNgv91AODc_Ou2C7g8Z6_fGxyeB7zgQGBHxRZBmoog0-DBhgcxyOtEsNlFoAcSlyCIemzSVUZFH3ESJDXlapKFmheQ519KUHMTeIdspgGTcINud3uj8YpNvwh2XFYRbITwJxuosfCFaAMKylcYS4fs3fHRtBFytsIZrvYaNnc8YsN9M_gAQh4r9h-SBd2dpe7X-HpEtO90l938hOdwlOy7J1Mwfk-9tetxpB4Pe2TDoAHoW9KJOX6qmdOh6WVNwomlfL68WtLvKApzMaVXSjzAVOl7OckzTp3h6TLF6JehWX_RkSmtuFaphmCsqnkN8DqK6eqFpf4lngk_I-Da0sUca02pqnxGaAySXqeaZlVmcMRAalVFqwzwDh88mvEne1g9dGc-Nji06rpSLkYRQqCLlVdQkh-vR1ytOkL-M66D-1mOQydt9Uc0-Kb8xKBMXJsnSkudSQiho4UPmzBpHxKZj1iRPvfY394KgXXAQ_wZXg8KdCCZrtC-ogL-MnF6qDZ5tIhMRx01y4BfMf-a7X68m5XeyudrY3fN___ya3AWDVGeno8ELcg_lrk6q9kljMVval-C7LfJX3iooUbdshz8BZXlL9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CBA-KELM-Based+Recognition+Method+for+Fault+Diagnosis+of+Wind+Turbines+with+Time-Domain+Analysis+and+Multisensor+Data+Fusion&rft.jtitle=Shock+and+vibration&rft.au=Xiafei+Long&rft.au=Ping+Yang&rft.au=Hongxia+Guo&rft.au=Zhuoli+Zhao&rft.date=2019-01-01&rft.pub=Wiley&rft.issn=1070-9622&rft.eissn=1875-9203&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F7490750&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c4dc687f3b99428eb999b2ec05558a42 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9622&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9622&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9622&client=summon |