A CBA-KELM-Based Recognition Method for Fault Diagnosis of Wind Turbines with Time-Domain Analysis and Multisensor Data Fusion

Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2019; no. 2019; pp. 1 - 14
Main Authors Zhao, Zhuoli, Guo, Hongxia, Yang, Ping, Long, Xiafei, Wu, Xiwen
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1070-9622
1875-9203
DOI10.1155/2019/7490750

Cover

More Information
Summary:Fault diagnosis technology (FDT) is an effective tool to ensure stability and reliable operation in wind turbines. In this paper, a novel fault diagnosis methodology based on a cloud bat algorithm (CBA)-kernel extreme learning machines (KELM) approach for wind turbines is proposed via combination of the multisensor data fusion technique and time-domain analysis. First, the derived method calculates the time-domain indices of raw signals, and the fused time-domain indexes dataset are obtained by the multisensor data fusion. Then, the CBA-based KELM recognition model that can identify fault patterns of a wind turbine gearbox (WTB) is automatically established with the fused dataset. The dataset includes a large number of samples involving 6 fault types under different operational conditions by 5 accelerometers. The effectiveness and feasibility of this proposed method are proved by adopting the datasets originated from the test rig, and it achieves a diagnostic accuracy of 96.25%. Finally, compared with the other peer-to-peer methods, the experimental classification results show that the proposed CBA-KELM technique has the best performances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9622
1875-9203
DOI:10.1155/2019/7490750