Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarker...

Full description

Saved in:
Bibliographic Details
Published inToxicology and applied pharmacology Vol. 268; no. 1; pp. 79 - 89
Main Authors Yamazaki, Makoto, Miyake, Manami, Sato, Hiroko, Masutomi, Naoya, Tsutsui, Naohisa, Adam, Klaus-Peter, Alexander, Danny C., Lawton, Kay A., Milburn, Michael V., Ryals, John A., Wulff, Jacob E., Guo, Lining
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.04.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the liver's ability to uptake bile acid from the circulation. ► Oxidative stress induced by the toxins altered bile acid biosynthesis in the liver. ► Selected bile acids in the plasma and urine could be sensitive DILI biomarkers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2013.01.018