Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers
Using combinations of fluorescently labeled peptide–major histocompatability complex (pMHC) tetramers, T-cell populations with multiple antigen specificities can be monitored in parallel from small samples of human blood. Also in this issue, Newell et al . present a very similar combinatorial encodi...
Saved in:
Published in | Nature methods Vol. 6; no. 7; pp. 520 - 526 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.07.2009
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Using combinations of fluorescently labeled peptide–major histocompatability complex (pMHC) tetramers, T-cell populations with multiple antigen specificities can be monitored in parallel from small samples of human blood. Also in this issue, Newell
et al
. present a very similar combinatorial encoding method for this purpose.
The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses to a few epitopes, limitations on human-subject sample size preclude a comprehensive analysis of T-cell immunity. To address this issue, we developed a combinatorial encoding strategy that allows the parallel detection of a multitude of different T-cell populations in a single sample. Detection of T cells from peripheral blood by combinatorial encoding is as efficient as detection with conventionally labeled multimers but results in a substantially increased sensitivity and, most notably, allows comprehensive screens to be performed. We obtained proof of principle for the feasibility of large-scale screening of human material by analysis of human leukocyte antigen A3–restricted T-cell responses to known and potential melanoma-associated antigens in peripheral blood from individuals with melanoma. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1548-7091 1548-7105 1548-7105 |
DOI: | 10.1038/nmeth.1345 |