Effect of Carboxymethylation and Phosphorylation on the Properties of Polysaccharides from Sepia esculenta Ink: Antioxidation and Anticoagulation in Vitro

To investigate the effect of carboxymethylation and phosphorylation modification on Sepia esculenta ink polysaccharide (SIP) properties, this study prepared carboxymethyl SIP (CSIP) with the chloracetic acid method, and phosphorylated SIP (PSIP) with the sodium trimetaphosphate (STMP)/sodium tripoly...

Full description

Saved in:
Bibliographic Details
Published inMarine drugs Vol. 17; no. 11; p. 626
Main Authors Liu, Huazhong, Li, Fangping, Luo, Ping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.11.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate the effect of carboxymethylation and phosphorylation modification on Sepia esculenta ink polysaccharide (SIP) properties, this study prepared carboxymethyl SIP (CSIP) with the chloracetic acid method, and phosphorylated SIP (PSIP) with the sodium trimetaphosphate (STMP)/sodium tripolyphosphate (STPP) method, on the basis of an orthogonal experiment. The in vitro antioxidant and anticoagulant activities of the derivatives were determined by assessing the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals, which activated the partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). The results showed that SIP was modified successfully to be CSIP and PSIP, and degrees of substitution (DSs) of the two products were 0.9913 and 0.0828, respectively. Phosphorylation efficiently improved the antioxidant property of SIP, and the IC values of PSIP on DPPH and hydroxyl radicals decreased by 63.25% and 13.77%, respectively. But carboxymethylation reduced antioxidant activity of the native polysaccharide, IC values of CSIP on the DPPH and hydroxyl radicals increased by 16.74% and 6.89%, respectively. SIP significantly prolonged the APTT, PT, and TT in a dose-dependent fashion, suggesting that SIP played an anticoagulant action through intrinsic, extrinsic, and common coagulation pathways. CSIP and PSIP both possessed a stronger anticoagulant capacity than SIP via the same pathways; moreover, CSIP was observed to be more effective in prolonging APTT and PT than PSIP.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1660-3397
1660-3397
DOI:10.3390/md17110626