Mechanism of cadmium poisoning on testicular injury in mice

Cadmium is a heavy metal that is toxic to humans and the reproductive system. The present study aimed to investigate the mechanisms of cadmium-induced reproductive toxicity in a male Institute of Cancer Research mouse model of cadmium poisoning. Changes in luteinizing hormone receptor (LHR), 17α-hyd...

Full description

Saved in:
Bibliographic Details
Published inOncology letters Vol. 18; no. 2; pp. 1035 - 1042
Main Authors Ren, Yaping, Shao, Wenhua, Zuo, Lijun, Zhao, Wei, Qin, Haizhang, Hua, Yingjie, Lu, Dejie, Mi, Chao, Zeng, Sien, Zu, Liao
Format Journal Article
LanguageEnglish
Published Greece Spandidos Publications 01.08.2019
Spandidos Publications UK Ltd
D.A. Spandidos
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cadmium is a heavy metal that is toxic to humans and the reproductive system. The present study aimed to investigate the mechanisms of cadmium-induced reproductive toxicity in a male Institute of Cancer Research mouse model of cadmium poisoning. Changes in luteinizing hormone receptor (LHR), 17α-hydroxylase and endothelial nitric oxide (NO) synthase (eNOS) expression levels were examined. A total of 24 male mice (4-week-old) were randomly divided into four groups (normal control group and low, medium and high cadmium groups) and subjected to gavage treatment with normal saline or cadmium-containing saline solutions for 8 weeks prior to sacrifice. To assess testicular injury, serum androgen levels were determined by ELISA, testicular tissue pathological changes were evaluated using hematoxylin and eosin staining. In addition, LHR, 17α-hydroxylase and eNOS expressions levels were examined by western blotting, and apoptosis was examined with a terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The results demonstrated that the severity of testes injury increased with cadmium concentration. In addition, LHR, 17α-hydroxylase and eNOS expression levels increased with low and medium concentrations of cadmium; however, they were decreased following treatment with high concentrations of cadmium. The results from the present study demonstrated that cadmium altered LHR, 17α-hydroxylase and eNOS expression levels in testicular stromal cells, which may impact testosterone synthesis. Furthermore, NO was suggested to be involved in cadmium-induced testicular injury by measurements of eNOS expression in testicular stromal cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2019.10418