Combination of E- and NS1-Derived DNA Vaccines: The Immune Response and Protection Elicited in Mice against DENV2
The occurrence of dengue disease has increased radically in recent decades. Previously, we constructed the pE1D2 and pcTPANS1 DNA vaccines encoding the DENV2 envelope (E) and non-structural 1 (NS1) proteins, respectively. To decrease the number of plasmids in a tetravalent candidate vaccine, we cons...
Saved in:
Published in | Viruses Vol. 14; no. 7; p. 1452 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
30.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The occurrence of dengue disease has increased radically in recent decades. Previously, we constructed the pE1D2 and pcTPANS1 DNA vaccines encoding the DENV2 envelope (E) and non-structural 1 (NS1) proteins, respectively. To decrease the number of plasmids in a tetravalent candidate vaccine, we constructed a bicistronic plasmid, pNS1/E/D2, encoding these two proteins simultaneously. We evaluated the protective immunity induced in mice vaccinated with the pNS1/E/D2 candidate and compared to the responses elicited by immunization with the former vaccines isolated or in combination. We transfected BHK-21 cells with the different plasmids and detected recombinant proteins by immunofluorescence and mass spectrometry assays to confirm antigen expression. BALB/c mice were inoculated with the DNA vaccines followed by a lethal DENV2 challenge. ELISA, PRNT50, and IFN-gamma ELISPOT assays were performed for the investigation of the humoral and cellular responses. We observed the concomitant expression of NS1 and E proteins in pNS1/E/D2-transfected cells. All E-based vaccines induced anti-E and neutralizing antibodies. However, anti-NS1 antibodies were only observed after immunization with the pcTPANS1 administered alone or combined with pE1D2. In contrast, splenocytes from pNS1/E/D2- or pcTPANS1 + pE1D2-vaccinated animals responded to NS1- and E-derived synthetic peptides. All the DNA vaccines conferred protection against DENV2. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1999-4915 1999-4915 |
DOI: | 10.3390/v14071452 |