NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection

AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 58; no. 2; pp. 195 - 207
Main Authors Segond, Diego, Dellagi, Alia, Lanquar, Viviane, Rigault, Martine, Patrit, Oriane, Thomine, Sébastien, Expert, Dominique
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.04.2009
Blackwell Publishing Ltd
Blackwell
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants.
AbstractList Summary AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi , whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3   nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron‐deficiency markers IRT1 and FRO2 . This finding suggests the existence of a shoot‐to‐root signal reminiscent of an iron‐deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants.
Summary AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron‐deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot‐to‐root signal reminiscent of an iron‐deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants.
AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants.
AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants. [PUBLICATION ABSTRACT]
SummaryAtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1-Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants.
Author Expert, Dominique
Thomine, Sébastien
Segond, Diego
Lanquar, Viviane
Rigault, Martine
Dellagi, Alia
Patrit, Oriane
Author_xml – sequence: 1
  fullname: Segond, Diego
– sequence: 2
  fullname: Dellagi, Alia
– sequence: 3
  fullname: Lanquar, Viviane
– sequence: 4
  fullname: Rigault, Martine
– sequence: 5
  fullname: Patrit, Oriane
– sequence: 6
  fullname: Thomine, Sébastien
– sequence: 7
  fullname: Expert, Dominique
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21305050$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19121106$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00855505$$DView record in HAL
BookMark eNqNkV1v0zAUhi00xLrBXwALCSQuGvwRO8nFLqppMFCBCTYJrizXsVdXqV3slK3_npOlKhI3YFvKh5_3-D1-T9BRiMEihCkpKIy3q4JyKaac8u8FI6QuCK8qUdw_QpPDxhGakEaSaVVSdoxOcl4RQisuyyfomDaUUUrkBP34_HX26Qrf2mAzdttgeh8D9gHPkl74Nm6yz7hf6s7roHGy8NnrYCzuI75Idz54jc0y7bIO_dKuPUidfSjyFD12usv22f55im7eXVyfX07nX95_OJ_Np0ZQDlYN1a4RggpnasHqhTQ1M7AHi1HSMuaahnLmalKJxpqmYmXTtlrXQlbWLfgpejPWBZNqk_xap52K2qvL2VwN_-B-hBBE_KLAvh7ZTYo_tzb3au2zsV2ng43brGQFt1kS-U-QEVEzmAC-_AtcxW0K0LBi0B4pGScA1SNkUsw5WXfwSYkaAlUrNeSmhtzUEKh6CFTdg_T5vv52sbbtH-E-QQBe7QGdje5cgnR8PnBggkDvg4ezkbvznd39twF1ffVxeAP9i1HvdFT6NsEZN98YgfJUUikqyX8DhM_EqQ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_171005
crossref_primary_10_1104_pp_114_254672
crossref_primary_10_1016_j_semcdb_2023_01_002
crossref_primary_10_1111_mpp_12007
crossref_primary_10_1111_mpp_12208
crossref_primary_10_3390_ijms21239280
crossref_primary_10_1111_nph_12292
crossref_primary_10_3390_plants12173173
crossref_primary_10_1111_j_1364_3703_2012_00790_x
crossref_primary_10_3389_fpls_2023_1318383
crossref_primary_10_1007_s00251_016_0905_2
crossref_primary_10_1089_ars_2012_5130
crossref_primary_10_3389_fpls_2022_840614
crossref_primary_10_1111_ppl_13318
crossref_primary_10_1104_pp_109_138636
crossref_primary_10_1128_mBio_01379_20
crossref_primary_10_1111_nph_18638
crossref_primary_10_1093_jxb_eraa516
crossref_primary_10_1111_j_1365_313X_2009_03879_x
crossref_primary_10_3390_ijms18122503
crossref_primary_10_3390_pathogens11101136
crossref_primary_10_1038_s41467_022_32167_6
crossref_primary_10_1038_nrmicro2836
crossref_primary_10_1094_MPMI_02_18_0043_R
crossref_primary_10_1007_s12033_019_00202_5
crossref_primary_10_3390_ijms22126449
crossref_primary_10_24072_pcjournal_225
crossref_primary_10_1016_j_plantsci_2013_04_006
crossref_primary_10_1038_s44319_023_00023_3
crossref_primary_10_1016_j_xplc_2024_100859
crossref_primary_10_1186_s12864_016_2705_3
crossref_primary_10_1007_s11103_016_0528_x
crossref_primary_10_1016_j_plantsci_2015_08_022
crossref_primary_10_3390_plants9050624
crossref_primary_10_1016_j_jmb_2021_166991
crossref_primary_10_1094_MPMI_05_14_0142_R
crossref_primary_10_1016_S2095_3119_13_60551_1
crossref_primary_10_3389_fimmu_2023_1279826
crossref_primary_10_1111_1574_6976_12004
crossref_primary_10_1146_annurev_arplant_042811_105608
crossref_primary_10_1007_s11295_023_01629_3
crossref_primary_10_1016_j_jplph_2022_153659
crossref_primary_10_1016_j_tibtech_2018_04_005
crossref_primary_10_1093_jxb_eraa535
crossref_primary_10_1038_s41598_020_75990_x
crossref_primary_10_1111_brv_12789
crossref_primary_10_3390_ijms232113627
crossref_primary_10_1038_s41598_017_13463_4
crossref_primary_10_1111_j_1364_3703_2012_00804_x
crossref_primary_10_1111_ppl_12166
crossref_primary_10_1016_j_plaphy_2024_108411
crossref_primary_10_1111_j_1462_2920_2010_02288_x
crossref_primary_10_1104_pp_113_233585
crossref_primary_10_1007_s10658_021_02375_9
crossref_primary_10_1094_MPMI_01_17_0005_R
crossref_primary_10_1093_plcell_koab075
crossref_primary_10_1371_journal_ppat_1003866
crossref_primary_10_1146_annurev_phyto_080516_035537
crossref_primary_10_1111_tpj_14610
crossref_primary_10_1111_pce_14263
crossref_primary_10_1371_journal_pone_0018991
crossref_primary_10_3390_ijms22179594
crossref_primary_10_1146_annurev_phyto_081211_173013
crossref_primary_10_1016_j_jprot_2011_01_012
crossref_primary_10_1186_s42483_023_00215_8
Cites_doi 10.1105/tpc.5.8.865
10.1016/j.pbi.2004.04.002
10.1105/tpc.000885
10.1073/pnas.89.15.6837
10.1146/annurev.phyto.37.1.307
10.1042/bj3590575
10.1007/s10534-006-9069-0
10.1046/j.1365-313X.2003.01802.x
10.1023/A:1005723304911
10.1073/pnas.012452499
10.1111/j.1365-2958.2004.04383.x
10.1073/pnas.97.9.4991
10.1016/j.plaphy.2005.07.006
10.1046/j.1525-1381.1999.99236.x
10.1046/j.1365-313X.2003.01760.x
10.1128/JB.00827-07
10.1242/jcs.001362
10.1084/jem.185.4.717
10.1104/pp.126.4.1646
10.1128/IAI.67.3.1386-1392.1999
10.1094/MPMI-20-7-0794
10.1126/science.284.5423.2148
10.1084/jem.189.5.831
10.1038/sj.emboj.7600864
10.1073/pnas.252415599
10.1073/pnas.95.2.429
10.1094/MPMI.2002.15.11.1181
10.1042/bj3180067
10.1038/nrmicro1046
10.1046/j.1365-313X.2002.01312.x
10.1074/jbc.M602135200
10.1042/bj3470749
10.1084/jem.182.3.655
10.1042/bj3220681
10.1104/pp.009076
10.1016/j.imbio.2006.02.004
10.1023/A:1009252919854
10.1038/17800
10.1073/pnas.93.11.5624
10.1046/j.1365-313X.2003.01717.x
10.1111/j.1365-313X.2005.02451.x
10.1074/jbc.M301365200
10.1016/j.bcp.2006.04.011
10.1104/pp.102.016089
10.1016/0092-8674(93)90135-D
10.1105/tpc.007468
10.1007/s00018-002-8520-9
10.1111/j.1365-313X.2007.03283.x
10.1080/00380768.2004.10408587
10.1104/pp.108.4.1353
10.1002/jlb.66.1.113
10.1104/pp.104.046367
10.1104/pp.124.4.1477
10.1038/41343
10.1016/0168-9525(96)30042-5
10.1016/S0966-842X(01)02098-4
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
2009 INIST-CNRS
Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
– notice: 2009 INIST-CNRS
– notice: Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7QL
7T7
C1K
7X8
1XC
DOI 10.1111/j.1365-313X.2008.03775.x
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environmental Sciences and Pollution Management
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic


Genetics Abstracts
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 207
ExternalDocumentID oai_HAL_hal_00855505v1
1677738471
10_1111_j_1365_313X_2008_03775_x
19121106
21305050
TPJ3775
US201301616576
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
HGLYW
OIG
08R
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7QL
7T7
C1K
7X8
1XC
ID FETCH-LOGICAL-c5135-3c1af95515fc8528b6c82cc51c51210d22f99132f80759ec97249ddaa8567efb3
IEDL.DBID DR2
ISSN 0960-7412
IngestDate Tue Oct 15 15:24:00 EDT 2024
Sun Jul 28 06:51:13 EDT 2024
Wed Jul 24 17:57:22 EDT 2024
Thu Oct 10 17:51:34 EDT 2024
Fri Aug 23 02:57:46 EDT 2024
Sat Sep 28 07:55:58 EDT 2024
Sun Oct 22 16:05:37 EDT 2023
Sat Aug 24 00:55:56 EDT 2024
Wed Dec 27 19:07:50 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Oxidative stress
Arabidopsis
Biological transport
Host agent relation
Iron
Transport process
Arabidopsis thaliana
Infection
Resistance
NRAMP
plant defense
Gene
Cruciferae
Dicotyledones
Angiospermae
Erwinia chrysanthemi
Bacteria
Defense mechanism
Spermatophyta
Enterobacteriaceae
OXIDATIVE STRESS
IRON
ARABIDOPSIS
PLANT DEFENSE
ERWINIA CHRYSANTHEMI
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5135-3c1af95515fc8528b6c82cc51c51210d22f99132f80759ec97249ddaa8567efb3
Notes http://dx.doi.org/10.1111/j.1365-313X.2008.03775.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0045-1701
0000-0002-8672-7707
PMID 19121106
PQID 213504230
PQPubID 31702
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00855505v1
proquest_miscellaneous_67200406
proquest_miscellaneous_20582828
proquest_journals_213504230
crossref_primary_10_1111_j_1365_313X_2008_03775_x
pubmed_primary_19121106
pascalfrancis_primary_21305050
wiley_primary_10_1111_j_1365_313X_2008_03775_x_TPJ3775
fao_agris_US201301616576
PublicationCentury 2000
PublicationDate April 2009
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: April 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Wiley
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley
References 2007; 189
2002; 14
2002; 15
2002; 59
2006; 72
2004; 7
2002; 99
2003; 15
1999; 284
2004; 2
2003; 278
2006; 211
1993; 5
2005; 24
1997; 388
2004; 136
2000; 124
1993; 73
1997; 185
2000; 97
1999; 12
1999; 11
2006; 281
2007; 20
1998; 95
1992; 89
2002; 30
2002; 130
2007; 120
2003; 35
1996; 93
1999; 67
1999; 66
2005; 43
2007; 52
1999; 189
2001; 126
2003; 132
1996; 12
2003; 34
1997; 322
1990; 2
1996; 318
2004; 50
1997; 33
2000; 347
1995; 108
1999; 37
2001; 9
1999; 111
1999; 397
2005; 55
1995; 182
2001; 359
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Guzman P. (e_1_2_6_26_1) 1990; 2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
Nawrath C. (e_1_2_6_39_1) 1999; 11
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
Gaymard F. (e_1_2_6_18_1) 1996; 318
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 318
  start-page: 67
  issue: Pt 1
  year: 1996
  end-page: 73
  article-title: Characterization of a ferritin mRNA from accumulated in response to iron through an oxidative pathway independent of abscisic acid
  publication-title: Biochem. J.
– volume: 2
  start-page: 513
  year: 1990
  end-page: 523
  article-title: Exploiting the triple response of Arabidopsis to identify ethylene‐related mutants
  publication-title: Plant Cell
– volume: 30
  start-page: 521
  year: 2002
  end-page: 528
  article-title: Nitric oxide mediates iron‐induced ferritin accumulation in Arabidopsis
  publication-title: Plant J.
– volume: 189
  start-page: 6773
  year: 2007
  end-page: 6786
  article-title: Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants
  publication-title: J. Bacteriol.
– volume: 14
  start-page: 1405
  year: 2002
  end-page: 1415
  article-title: Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole‐3‐acetic acids in an assay for adenylation
  publication-title: Plant Cell
– volume: 322
  start-page: 681
  issue: Pt 3
  year: 1997
  end-page: 692
  article-title: Oxidative burst: an early plant response to pathogen infection
  publication-title: Biochem. J.
– volume: 189
  start-page: 831
  year: 1999
  end-page: 841
  article-title: The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes
  publication-title: J. Exp. Med.
– volume: 66
  start-page: 113
  year: 1999
  end-page: 119
  article-title: Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169
  publication-title: J. Leukoc. Biol.
– volume: 132
  start-page: 796
  year: 2003
  end-page: 804
  article-title: Dual regulation of the Arabidopsis high‐affinity root iron uptake system by local and long‐distance signals
  publication-title: Plant Physiol.
– volume: 33
  start-page: 1085
  year: 1997
  end-page: 1092
  article-title: Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions
  publication-title: Plant Mol. Biol.
– volume: 2
  start-page: 946
  year: 2004
  end-page: 953
  article-title: Iron and microbial infection
  publication-title: Nat. Rev. Microbiol.
– volume: 347
  start-page: 749
  year: 2000
  end-page: 755
  article-title: Involvement of NRAMP1 from in iron transport
  publication-title: Biochem. J.
– volume: 15
  start-page: 1181
  year: 2002
  end-page: 1191
  article-title: Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937
  publication-title: Mol. Plant Microbe Interact.
– volume: 55
  start-page: 261
  year: 2005
  end-page: 275
  article-title: Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection
  publication-title: Mol. Microbiol.
– volume: 9
  start-page: 397
  year: 2001
  end-page: 403
  article-title: Divalent‐metal transport by NRAMP proteins at the interface of host‐pathogen interactions
  publication-title: Trends Microbiol.
– volume: 20
  start-page: 794
  year: 2007
  end-page: 805
  article-title: expresses multiple lines of defense to counterattack Erwinia chrysanthemi
  publication-title: Mol. Plant Microbe Interact.
– volume: 108
  start-page: 1353
  year: 1995
  end-page: 1358
  article-title: Plant defensins: novel antimicrobial peptides as components of the host defense system
  publication-title: Plant Physiol.
– volume: 34
  start-page: 685
  year: 2003
  end-page: 695
  article-title: AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency
  publication-title: Plant J.
– volume: 34
  start-page: 217
  year: 2003
  end-page: 228
  article-title: Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping
  publication-title: Plant J.
– volume: 136
  start-page: 2621
  year: 2004
  end-page: 2632
  article-title: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox
  publication-title: Plant Physiol.
– volume: 43
  start-page: 793
  year: 2005
  end-page: 801
  article-title: Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+‐transport abilities
  publication-title: Plant Physiol. Biochem.
– volume: 52
  start-page: 949
  year: 2007
  end-page: 960
  article-title: Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots
  publication-title: Plant J.
– volume: 126
  start-page: 1646
  year: 2001
  end-page: 1667
  article-title: Phylogenetic relationships within cation transporter families of Arabidopsis
  publication-title: Plant Physiol.
– volume: 37
  start-page: 307
  year: 1999
  end-page: 334
  article-title: Withholding and exchanging Iron: interactions between Erwinia spp. and their plant hosts
  publication-title: Annu. Rev. Phytopathol.
– volume: 35
  start-page: 295
  year: 2003
  end-page: 304
  article-title: The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport
  publication-title: Plant J.
– volume: 7
  start-page: 449
  year: 2004
  end-page: 455
  article-title: Nitric oxide: a new player in plant signalling and defence responses
  publication-title: Curr. Opin. Plant Biol.
– volume: 20
  start-page: 347
  year: 2007
  end-page: 353
  article-title: Ferritins, bacterial virulence and plant defence
  publication-title: Biometals
– volume: 95
  start-page: 429
  year: 1998
  end-page: 430
  article-title: Self‐defense: the fruit fly style
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 397
  start-page: 694
  year: 1999
  end-page: 697
  article-title: A ferric‐chelate reductase for iron uptake from soils
  publication-title: Nature
– volume: 43
  start-page: 262
  year: 2005
  end-page: 272
  article-title: Siderophore‐mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection
  publication-title: Plant J.
– volume: 5
  start-page: 865
  year: 1993
  end-page: 875
  article-title: RPS2, an Arabidopsis disease resistance locus specifying recognition of strains expressing the avirulence gene avrRpt2
  publication-title: Plant Cell
– volume: 182
  start-page: 655
  year: 1995
  end-page: 666
  article-title: The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene
  publication-title: J. Exp. Med.
– volume: 67
  start-page: 1386
  year: 1999
  end-page: 1392
  article-title: Role of iron in Nramp1‐mediated inhibition of mycobacterial growth
  publication-title: Infect. Immun.
– volume: 12
  start-page: 201
  year: 1996
  end-page: 204
  article-title: Resistance to intracellular infections: comparative genomic analysis of Nramp
  publication-title: Trends Genet.
– volume: 99
  start-page: 517
  year: 2002
  end-page: 522
  article-title: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 50
  start-page: 1141
  year: 2004
  end-page: 1150
  article-title: Regulation and Function of AtNRAMP4 Metal Transporter Protein
  publication-title: Soil Sci. Plant Nutr.
– volume: 120
  start-page: 596
  year: 2007
  end-page: 605
  article-title: Targeted alterations in iron homeostasis underlie plant defense responses
  publication-title: J. Cell Sci.
– volume: 388
  start-page: 482
  year: 1997
  end-page: 488
  article-title: Cloning and characterization of a mammalian proton‐coupled metal‐ion transporter
  publication-title: Nature
– volume: 211
  start-page: 295
  year: 2006
  end-page: 314
  article-title: Iron‐withholding strategy in innate immunity
  publication-title: Immunobiology
– volume: 124
  start-page: 1477
  year: 2000
  end-page: 1480
  article-title: Seed and molecular resources for Arabidopsis
  publication-title: Plant Physiol.
– volume: 284
  start-page: 2148
  year: 1999
  end-page: 2152
  article-title: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis
  publication-title: Science
– volume: 89
  start-page: 6837
  year: 1992
  end-page: 6840
  article-title: Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an mutant
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 97
  start-page: 4991
  year: 2000
  end-page: 4996
  article-title: Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 12
  start-page: 195
  year: 1999
  end-page: 199
  article-title: Iron and activated oxygen species in biology: the basic chemistry
  publication-title: Biometals
– volume: 93
  start-page: 5624
  year: 1996
  end-page: 5628
  article-title: A novel iron‐regulated metal transporter from plants identified by functional expression in yeast
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 15
  start-page: 165
  year: 2003
  end-page: 178
  article-title: ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense
  publication-title: Plant Cell
– volume: 359
  start-page: 575
  year: 2001
  end-page: 582
  article-title: Structure and differential expression of the four members of the ferritin gene family
  publication-title: Biochem. J.
– volume: 24
  start-page: 4041
  year: 2005
  end-page: 4051
  article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron
  publication-title: EMBO J.
– volume: 73
  start-page: 469
  year: 1993
  end-page: 485
  article-title: Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg
  publication-title: Cell
– volume: 59
  start-page: 1428
  year: 2002
  end-page: 1459
  article-title: The superoxide‐generating NADPH oxidase: structural aspects and activation mechanism
  publication-title: Cell. Mol. Life Sci.
– volume: 111
  start-page: 283
  year: 1999
  end-page: 289
  article-title: The Nramp1 protein and its role in resistance to infection and macrophage function
  publication-title: Proc. Assoc. Am. Physicians
– volume: 185
  start-page: 717
  year: 1997
  end-page: 730
  article-title: Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome
  publication-title: J. Exp. Med.
– volume: 281
  start-page: 23579
  year: 2006
  end-page: 23588
  article-title: An iron‐induced nitric oxide burst precedes ubiquitin‐dependent protein degradation for Arabidopsis ferritin gene expression
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 15705
  year: 2002
  end-page: 15710
  article-title: Host‐pathogen interactions: host resistance factor Nramp1 up‐regulates the expression of Salmonella pathogenicity island‐2 virulence genes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 11
  start-page: 1393
  year: 1999
  end-page: 1404
  article-title: Salicylic acid induction‐deficient mutants of Arabidopsis express PR‐2 and PR‐5 and accumulate high levels of camalexin after pathogen inoculation
  publication-title: Plant Cell
– volume: 130
  start-page: 1852
  year: 2002
  end-page: 1859
  article-title: Nitric oxide improves internal iron availability in plants
  publication-title: Plant Physiol.
– volume: 278
  start-page: 24697
  year: 2003
  end-page: 24704
  article-title: Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato
  publication-title: J. Biol. Chem.
– volume: 72
  start-page: 1493
  year: 2006
  end-page: 1505
  article-title: NF‐kappaB activation by reactive oxygen species: fifteen years later
  publication-title: Biochem. Pharmacol.
– ident: e_1_2_6_30_1
  doi: 10.1105/tpc.5.8.865
– ident: e_1_2_6_55_1
  doi: 10.1016/j.pbi.2004.04.002
– ident: e_1_2_6_47_1
  doi: 10.1105/tpc.000885
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.89.15.6837
– ident: e_1_2_6_13_1
  doi: 10.1146/annurev.phyto.37.1.307
– ident: e_1_2_6_41_1
  doi: 10.1042/bj3590575
– ident: e_1_2_6_6_1
  doi: 10.1007/s10534-006-9069-0
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1365-313X.2003.01802.x
– ident: e_1_2_6_4_1
  doi: 10.1023/A:1005723304911
– volume: 2
  start-page: 513
  year: 1990
  ident: e_1_2_6_26_1
  article-title: Exploiting the triple response of Arabidopsis to identify ethylene‐related mutants
  publication-title: Plant Cell
  contributor:
    fullname: Guzman P.
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.012452499
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-2958.2004.04383.x
– ident: e_1_2_6_48_1
  doi: 10.1073/pnas.97.9.4991
– ident: e_1_2_6_37_1
  doi: 10.1016/j.plaphy.2005.07.006
– ident: e_1_2_6_8_1
  doi: 10.1046/j.1525-1381.1999.99236.x
– ident: e_1_2_6_49_1
  doi: 10.1046/j.1365-313X.2003.01760.x
– ident: e_1_2_6_27_1
  doi: 10.1128/JB.00827-07
– ident: e_1_2_6_33_1
  doi: 10.1242/jcs.001362
– ident: e_1_2_6_23_1
  doi: 10.1084/jem.185.4.717
– ident: e_1_2_6_35_1
  doi: 10.1104/pp.126.4.1646
– ident: e_1_2_6_59_1
  doi: 10.1128/IAI.67.3.1386-1392.1999
– volume: 11
  start-page: 1393
  year: 1999
  ident: e_1_2_6_39_1
  article-title: Salicylic acid induction‐deficient mutants of Arabidopsis express PR‐2 and PR‐5 and accumulate high levels of camalexin after pathogen inoculation
  publication-title: Plant Cell
  contributor:
    fullname: Nawrath C.
– ident: e_1_2_6_14_1
  doi: 10.1094/MPMI-20-7-0794
– ident: e_1_2_6_2_1
  doi: 10.1126/science.284.5423.2148
– ident: e_1_2_6_24_1
  doi: 10.1084/jem.189.5.831
– ident: e_1_2_6_32_1
  doi: 10.1038/sj.emboj.7600864
– ident: e_1_2_6_57_1
  doi: 10.1073/pnas.252415599
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.95.2.429
– ident: e_1_2_6_16_1
  doi: 10.1094/MPMI.2002.15.11.1181
– volume: 318
  start-page: 67
  issue: 1
  year: 1996
  ident: e_1_2_6_18_1
  article-title: Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid
  publication-title: Biochem. J.
  doi: 10.1042/bj3180067
  contributor:
    fullname: Gaymard F.
– ident: e_1_2_6_44_1
  doi: 10.1038/nrmicro1046
– ident: e_1_2_6_38_1
  doi: 10.1046/j.1365-313X.2002.01312.x
– ident: e_1_2_6_3_1
  doi: 10.1074/jbc.M602135200
– ident: e_1_2_6_10_1
  doi: 10.1042/bj3470749
– ident: e_1_2_6_53_1
  doi: 10.1084/jem.182.3.655
– ident: e_1_2_6_56_1
  doi: 10.1042/bj3220681
– ident: e_1_2_6_22_1
  doi: 10.1104/pp.009076
– ident: e_1_2_6_40_1
  doi: 10.1016/j.imbio.2006.02.004
– ident: e_1_2_6_42_1
  doi: 10.1023/A:1009252919854
– ident: e_1_2_6_43_1
  doi: 10.1038/17800
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.93.11.5624
– ident: e_1_2_6_19_1
  doi: 10.1046/j.1365-313X.2003.01717.x
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1365-313X.2005.02451.x
– ident: e_1_2_6_5_1
  doi: 10.1074/jbc.M301365200
– ident: e_1_2_6_20_1
  doi: 10.1016/j.bcp.2006.04.011
– ident: e_1_2_6_51_1
  doi: 10.1104/pp.102.016089
– ident: e_1_2_6_52_1
  doi: 10.1016/0092-8674(93)90135-D
– ident: e_1_2_6_34_1
  doi: 10.1105/tpc.007468
– ident: e_1_2_6_54_1
  doi: 10.1007/s00018-002-8520-9
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-313X.2007.03283.x
– ident: e_1_2_6_31_1
  doi: 10.1080/00380768.2004.10408587
– ident: e_1_2_6_7_1
  doi: 10.1104/pp.108.4.1353
– ident: e_1_2_6_29_1
  doi: 10.1002/jlb.66.1.113
– ident: e_1_2_6_58_1
  doi: 10.1104/pp.104.046367
– ident: e_1_2_6_45_1
  doi: 10.1104/pp.124.4.1477
– ident: e_1_2_6_25_1
  doi: 10.1038/41343
– ident: e_1_2_6_9_1
  doi: 10.1016/0168-9525(96)30042-5
– ident: e_1_2_6_15_1
  doi: 10.1016/S0966-842X(01)02098-4
SSID ssj0017364
Score 2.281205
Snippet AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter...
Summary AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion...
SummaryAtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1-Slc11A1 metal ion...
SourceID hal
proquest
crossref
pubmed
pascalfrancis
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 195
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Bacteria
Bacterial plant pathogens
Biological and medical sciences
Botany
Cation Transport Proteins
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
DNA, Plant
DNA, Plant - genetics
Erwinia chrysanthemi
Ferritins
Ferritins - genetics
Ferritins - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genes, Plant
Genetics
Immunity, Innate
Iron
Iron - deficiency
Life Sciences
Metals
Mutation
NRAMP
Oligonucleotide Array Sequence Analysis
Oxidative Stress
Pathology. Damages, economic importance
Pectobacterium chrysanthemi
Pectobacterium chrysanthemi - growth & development
Phytopathology. Animal pests. Plant and forest protection
plant defense
Plant Leaves
Plant Leaves - genetics
Plant Leaves - immunology
Plant Leaves - metabolism
Plant Leaves - microbiology
Plant pathology
Plant Roots
Plant Roots - genetics
Plant Roots - immunology
Plant Roots - metabolism
Plants, Genetically Modified
Plants, Genetically Modified - genetics
Plants, Genetically Modified - immunology
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - microbiology
Pseudomonas syringae
Vegetal Biology
Title NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2008.03775.x
https://www.ncbi.nlm.nih.gov/pubmed/19121106
https://www.proquest.com/docview/213504230
https://search.proquest.com/docview/20582828
https://search.proquest.com/docview/67200406
https://hal.science/hal-00855505
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ta9swED62sg-Dsfe1XtdOjH11sKT47WO2tYSyldI1kH0Skiw3oWCH2hnrfv3u_LamtFDGIJgQycI-n-6es548AvgYBJnQmXB-kNrQH0fc-AaRhT_WqbVhzikHEtviOJrOxkfzcN7xn-i_MK0-xPDCjWZGE69pgmtTbU5yYmhJLucdJVLGcTgiPMllTOyuL6eDkhSPZaskhYDdxyR6g9Rz60Abmephrks8Logt-WSlKzRg3u58cRs03US6Tao6fAYX_U22DJWL0bo2I_v7hv7j_7HCc3jaIVo2aV3wBTxwxUt49KlE1Hn1Cn4cn06-nbBzCqmMkig5AlsW2F-bZVauqmXF6kXztkUzrP0Jz6IjsrpkB6ROvNTMLi6vKvQA0jZgPXuseA2zw4Ozz1O_287BtyGXeI2W6zxFhEa0sVAkJrKJQIfg-MHCMxMiR7AqRU76yKmzaYylYZZpnYRR7HIj38BWURZuBxiJtkvnAmdlMsYKyWSGZzIXVhiD0TvygPePTq1a1Q51rdpBiymyWLcHJ1lM_fJgB5-x0ucYXNXsu6AlXYTDERZkHnxAOwwjkSL3dPJV0W8Nzw9R5E_uwf6GXwzdBQ6EPQIPdntHUV2gqKgxJGoStr4fWnGG07KNLly5xi4BLW2K5O4eUUyxLsDr3G797-9NpyThRy1R40X3toY6Ozmib2__9cRdeNwvvAX8HWzVl2u3h_itNvvNzPwDEgsyVg
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9swEBddO9hgrO1e9foSY18dLCl-fcy2lrRLQ-kSyD4JSZabsGGH2hnr_vrd-bWldDDGIIQQXYR9vsfvpMtPhLz1vISrhFvXi43v9gOmXQ3Iwu2r2Bg_ZZgDsdtiHAyn_fOZP2uOA8L_wtT8EN2CG3pGFa_RwXFBet3LsUVLMDFreiJFGPo9AJRb4P0Cz3H4cNVxSbFQ1FxSANldSKN32nrunWktVz1IVQ7vc-yXfLJUBagwrc--uA-crmPdKlmdbpOv7W3WPSpfeqtS98yPOwyQ_0kPO-RpA2rpoLbCXbJhs2fk4bscgOftc_J5fDW4uKTXGFUp5lG0BbrIQF7pRZIvi0VBy3m14KIolP8IacEWaZnTEyQoXihq5je3BRgB0hvQtoEse0GmpyeT90O3OdHBNT4TcI2GqTQGkIadYz6PdGAiDjbB4AW1Z8J5CnhV8BQpkmNr4hCqwyRRKvKD0KZavCSbWZ7ZPUKRt11Y61kjoj4USTrRLBEpN1xrCOCBQ1j77OSyJu6QvxU8oDGJGmuO4USNye8O2YOHLNU1xFc5_cRxVxcQcQA1mUPegB66mZCUezgYSfyuavUDIPmNOeRozTA6cQ4TgYTnkP3WUmQTKwoc9LE7CUaPu1Fwcty5UZnNVyDi4e4mj_4sEYQY7jy4zle1Af666RhZ_HAkqMzor7UhJ5fn-On1v_7wmDwaTi5GcnQ2_rhPHrf7cB47IJvlzcoeApwr9VHlpj8BMBo2bg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ta9swEBZbN8ZgdG_d6nZrxdhXB0vy68e0a8i6LoSugeyTkGS5CQU71M5Y9-t357ctpYMxBsGESBb2-XT3nPXkESHvPS_lKuXW9RITuH7ItKsBWbi-SowJMoY5ENkWk3A880_nwbzlP-F_YRp9iP6FG86MOl7jBF-l2eYkR4aWYGLeUiJFFAUDwJMP_BCAMAKk815KikWikZICxO5CFr3F6rlzpI1UdT9TBRwXSJd8slIlWDBrtr64C5tuQt06V42ekqvuLhuKytVgXemB-XFLAPL_mOEZ2W4hLR02Pvic3LP5C_LwqADYefOSfJ2cDz9P6SXGVIpZFD2BLnPor_QyLVblsqTVon7doigU_whowRNpVdATlCdeKmoW1zcluACKG9COPpbvkNno5OJ47Lb7ObgmYAKu0TCVJQDRkDcW8FiHJubgEQw-UHmmnGeAVgXPUCA5sSaJoDZMU6XiIIxspsUrspUXud0lFFXbhbWeNSL2oUTSqWapyLjhWkP4Dh3CukcnV41sh_yt3AGLSbRYuwknWkx-d8guPGOpLiG6ytkXjmu6gIdDqMgc8g7s0I-Ektzj4ZnE32qiH8DIb8whBxt-0XfnMBD08Byy3zmKbCNFiY0BcpOg9bBvhSmO6zYqt8Uauni4tsnjP_cIIwx2Hlzn68b_ft10ghp-2BLWXvTX1pAX01P8tvevJx6SR9MPI3n2cfJpnzzuFuE89oZsVddr-xawXKUP6kn6E0euNR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NRAMP+genes+function+in+Arabidopsis+thaliana+resistance+to+Erwinia+chrysanthemi+infection&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Segond%2C+Diego&rft.au=Dellagi%2C+Alia&rft.au=Lanquar%2C+Viviane&rft.au=Rigault%2C+Martine&rft.date=2009-04-01&rft.pub=Wiley&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=58&rft.issue=2&rft.spage=195&rft.epage=207&rft_id=info:doi/10.1111%2Fj.1365-313X.2008.03775.x&rft_id=info%3Apmid%2F19121106&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00855505v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon