NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection
AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 58; no. 2; pp. 195 - 207 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.04.2009
Blackwell Publishing Ltd Blackwell Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants. |
---|---|
AbstractList | Summary
AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that
AtNRAMP3
is upregulated in leaves challenged with the bacterial pathogens
Pseudomonas syringae
and
Erwinia chrysanthemi
, whereas
AtNRAMP4
expression is not modified. Using single and double
nramp3
and
nramp4
mutants, as well as lines ectopically expressing either of these genes, we show that
AtNRAMP3
and, to a lesser extent,
AtNRAMP4
are involved in
Arabidopsis thaliana
resistance against the bacterial pathogen
E. chrysanthemi.
The susceptibility of the double
nramp3
nramp4
mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in
A. thaliana
defense. Interestingly, roots from infected plants accumulated transcripts of
AtNRAMP3
as well as the iron‐deficiency markers
IRT1
and
FRO2
. This finding suggests the existence of a shoot‐to‐root signal reminiscent of an iron‐deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants. Summary AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron‐deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot‐to‐root signal reminiscent of an iron‐deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants. AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants. AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3 nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants. [PUBLICATION ABSTRACT] SummaryAtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1-Slc11A1 metal ion transporter plays a crucial role in the innate immunity of animal macrophages targeted by intracellular bacterial pathogens. AtNRAMP3 and AtNRAMP4 localize to the vacuolar membrane. We found that AtNRAMP3 is upregulated in leaves challenged with the bacterial pathogens Pseudomonas syringae and Erwinia chrysanthemi, whereas AtNRAMP4 expression is not modified. Using single and double nramp3 and nramp4 mutants, as well as lines ectopically expressing either of these genes, we show that AtNRAMP3 and, to a lesser extent, AtNRAMP4 are involved in Arabidopsis thaliana resistance against the bacterial pathogen E. chrysanthemi. The susceptibility of the double nramp3nramp4 mutant is associated with the reduced accumulation of reactive oxygen species and ferritin (AtFER1), an iron storage protein known to participate in A. thaliana defense. Interestingly, roots from infected plants accumulated transcripts of AtNRAMP3 as well as the iron-deficiency markers IRT1 and FRO2. This finding suggests the existence of a shoot-to-root signal reminiscent of an iron-deficiency signal activated by pathogen infection. Our data indicate that the functions of NRAMP proteins in innate immunity have been conserved between animals and plants. |
Author | Expert, Dominique Thomine, Sébastien Segond, Diego Lanquar, Viviane Rigault, Martine Dellagi, Alia Patrit, Oriane |
Author_xml | – sequence: 1 fullname: Segond, Diego – sequence: 2 fullname: Dellagi, Alia – sequence: 3 fullname: Lanquar, Viviane – sequence: 4 fullname: Rigault, Martine – sequence: 5 fullname: Patrit, Oriane – sequence: 6 fullname: Thomine, Sébastien – sequence: 7 fullname: Expert, Dominique |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21305050$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19121106$$D View this record in MEDLINE/PubMed https://hal.science/hal-00855505$$DView record in HAL |
BookMark | eNqNkV1v0zAUhi00xLrBXwALCSQuGvwRO8nFLqppMFCBCTYJrizXsVdXqV3slK3_npOlKhI3YFvKh5_3-D1-T9BRiMEihCkpKIy3q4JyKaac8u8FI6QuCK8qUdw_QpPDxhGakEaSaVVSdoxOcl4RQisuyyfomDaUUUrkBP34_HX26Qrf2mAzdttgeh8D9gHPkl74Nm6yz7hf6s7roHGy8NnrYCzuI75Idz54jc0y7bIO_dKuPUidfSjyFD12usv22f55im7eXVyfX07nX95_OJ_Np0ZQDlYN1a4RggpnasHqhTQ1M7AHi1HSMuaahnLmalKJxpqmYmXTtlrXQlbWLfgpejPWBZNqk_xap52K2qvL2VwN_-B-hBBE_KLAvh7ZTYo_tzb3au2zsV2ng43brGQFt1kS-U-QEVEzmAC-_AtcxW0K0LBi0B4pGScA1SNkUsw5WXfwSYkaAlUrNeSmhtzUEKh6CFTdg_T5vv52sbbtH-E-QQBe7QGdje5cgnR8PnBggkDvg4ezkbvznd39twF1ffVxeAP9i1HvdFT6NsEZN98YgfJUUikqyX8DhM_EqQ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_171005 crossref_primary_10_1104_pp_114_254672 crossref_primary_10_1016_j_semcdb_2023_01_002 crossref_primary_10_1111_mpp_12007 crossref_primary_10_1111_mpp_12208 crossref_primary_10_3390_ijms21239280 crossref_primary_10_1111_nph_12292 crossref_primary_10_3390_plants12173173 crossref_primary_10_1111_j_1364_3703_2012_00790_x crossref_primary_10_3389_fpls_2023_1318383 crossref_primary_10_1007_s00251_016_0905_2 crossref_primary_10_1089_ars_2012_5130 crossref_primary_10_3389_fpls_2022_840614 crossref_primary_10_1111_ppl_13318 crossref_primary_10_1104_pp_109_138636 crossref_primary_10_1128_mBio_01379_20 crossref_primary_10_1111_nph_18638 crossref_primary_10_1093_jxb_eraa516 crossref_primary_10_1111_j_1365_313X_2009_03879_x crossref_primary_10_3390_ijms18122503 crossref_primary_10_3390_pathogens11101136 crossref_primary_10_1038_s41467_022_32167_6 crossref_primary_10_1038_nrmicro2836 crossref_primary_10_1094_MPMI_02_18_0043_R crossref_primary_10_1007_s12033_019_00202_5 crossref_primary_10_3390_ijms22126449 crossref_primary_10_24072_pcjournal_225 crossref_primary_10_1016_j_plantsci_2013_04_006 crossref_primary_10_1038_s44319_023_00023_3 crossref_primary_10_1016_j_xplc_2024_100859 crossref_primary_10_1186_s12864_016_2705_3 crossref_primary_10_1007_s11103_016_0528_x crossref_primary_10_1016_j_plantsci_2015_08_022 crossref_primary_10_3390_plants9050624 crossref_primary_10_1016_j_jmb_2021_166991 crossref_primary_10_1094_MPMI_05_14_0142_R crossref_primary_10_1016_S2095_3119_13_60551_1 crossref_primary_10_3389_fimmu_2023_1279826 crossref_primary_10_1111_1574_6976_12004 crossref_primary_10_1146_annurev_arplant_042811_105608 crossref_primary_10_1007_s11295_023_01629_3 crossref_primary_10_1016_j_jplph_2022_153659 crossref_primary_10_1016_j_tibtech_2018_04_005 crossref_primary_10_1093_jxb_eraa535 crossref_primary_10_1038_s41598_020_75990_x crossref_primary_10_1111_brv_12789 crossref_primary_10_3390_ijms232113627 crossref_primary_10_1038_s41598_017_13463_4 crossref_primary_10_1111_j_1364_3703_2012_00804_x crossref_primary_10_1111_ppl_12166 crossref_primary_10_1016_j_plaphy_2024_108411 crossref_primary_10_1111_j_1462_2920_2010_02288_x crossref_primary_10_1104_pp_113_233585 crossref_primary_10_1007_s10658_021_02375_9 crossref_primary_10_1094_MPMI_01_17_0005_R crossref_primary_10_1093_plcell_koab075 crossref_primary_10_1371_journal_ppat_1003866 crossref_primary_10_1146_annurev_phyto_080516_035537 crossref_primary_10_1111_tpj_14610 crossref_primary_10_1111_pce_14263 crossref_primary_10_1371_journal_pone_0018991 crossref_primary_10_3390_ijms22179594 crossref_primary_10_1146_annurev_phyto_081211_173013 crossref_primary_10_1016_j_jprot_2011_01_012 crossref_primary_10_1186_s42483_023_00215_8 |
Cites_doi | 10.1105/tpc.5.8.865 10.1016/j.pbi.2004.04.002 10.1105/tpc.000885 10.1073/pnas.89.15.6837 10.1146/annurev.phyto.37.1.307 10.1042/bj3590575 10.1007/s10534-006-9069-0 10.1046/j.1365-313X.2003.01802.x 10.1023/A:1005723304911 10.1073/pnas.012452499 10.1111/j.1365-2958.2004.04383.x 10.1073/pnas.97.9.4991 10.1016/j.plaphy.2005.07.006 10.1046/j.1525-1381.1999.99236.x 10.1046/j.1365-313X.2003.01760.x 10.1128/JB.00827-07 10.1242/jcs.001362 10.1084/jem.185.4.717 10.1104/pp.126.4.1646 10.1128/IAI.67.3.1386-1392.1999 10.1094/MPMI-20-7-0794 10.1126/science.284.5423.2148 10.1084/jem.189.5.831 10.1038/sj.emboj.7600864 10.1073/pnas.252415599 10.1073/pnas.95.2.429 10.1094/MPMI.2002.15.11.1181 10.1042/bj3180067 10.1038/nrmicro1046 10.1046/j.1365-313X.2002.01312.x 10.1074/jbc.M602135200 10.1042/bj3470749 10.1084/jem.182.3.655 10.1042/bj3220681 10.1104/pp.009076 10.1016/j.imbio.2006.02.004 10.1023/A:1009252919854 10.1038/17800 10.1073/pnas.93.11.5624 10.1046/j.1365-313X.2003.01717.x 10.1111/j.1365-313X.2005.02451.x 10.1074/jbc.M301365200 10.1016/j.bcp.2006.04.011 10.1104/pp.102.016089 10.1016/0092-8674(93)90135-D 10.1105/tpc.007468 10.1007/s00018-002-8520-9 10.1111/j.1365-313X.2007.03283.x 10.1080/00380768.2004.10408587 10.1104/pp.108.4.1353 10.1002/jlb.66.1.113 10.1104/pp.104.046367 10.1104/pp.124.4.1477 10.1038/41343 10.1016/0168-9525(96)30042-5 10.1016/S0966-842X(01)02098-4 |
ContentType | Journal Article |
Copyright | 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd 2009 INIST-CNRS Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd – notice: 2009 INIST-CNRS – notice: Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7QL 7T7 C1K 7X8 1XC |
DOI | 10.1111/j.1365-313X.2008.03775.x |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Environmental Sciences and Pollution Management MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Genetics Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 207 |
ExternalDocumentID | oai_HAL_hal_00855505v1 1677738471 10_1111_j_1365_313X_2008_03775_x 19121106 21305050 TPJ3775 US201301616576 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHBH AHBTC AITYG HGLYW OIG 08R IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7QL 7T7 C1K 7X8 1XC |
ID | FETCH-LOGICAL-c5135-3c1af95515fc8528b6c82cc51c51210d22f99132f80759ec97249ddaa8567efb3 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 |
IngestDate | Tue Oct 15 15:24:00 EDT 2024 Sun Jul 28 06:51:13 EDT 2024 Wed Jul 24 17:57:22 EDT 2024 Thu Oct 10 17:51:34 EDT 2024 Fri Aug 23 02:57:46 EDT 2024 Sat Sep 28 07:55:58 EDT 2024 Sun Oct 22 16:05:37 EDT 2023 Sat Aug 24 00:55:56 EDT 2024 Wed Dec 27 19:07:50 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Oxidative stress Arabidopsis Biological transport Host agent relation Iron Transport process Arabidopsis thaliana Infection Resistance NRAMP plant defense Gene Cruciferae Dicotyledones Angiospermae Erwinia chrysanthemi Bacteria Defense mechanism Spermatophyta Enterobacteriaceae OXIDATIVE STRESS IRON ARABIDOPSIS PLANT DEFENSE ERWINIA CHRYSANTHEMI |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5135-3c1af95515fc8528b6c82cc51c51210d22f99132f80759ec97249ddaa8567efb3 |
Notes | http://dx.doi.org/10.1111/j.1365-313X.2008.03775.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0045-1701 0000-0002-8672-7707 |
PMID | 19121106 |
PQID | 213504230 |
PQPubID | 31702 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_00855505v1 proquest_miscellaneous_67200406 proquest_miscellaneous_20582828 proquest_journals_213504230 crossref_primary_10_1111_j_1365_313X_2008_03775_x pubmed_primary_19121106 pascalfrancis_primary_21305050 wiley_primary_10_1111_j_1365_313X_2008_03775_x_TPJ3775 fao_agris_US201301616576 |
PublicationCentury | 2000 |
PublicationDate | April 2009 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: April 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Wiley |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley |
References | 2007; 189 2002; 14 2002; 15 2002; 59 2006; 72 2004; 7 2002; 99 2003; 15 1999; 284 2004; 2 2003; 278 2006; 211 1993; 5 2005; 24 1997; 388 2004; 136 2000; 124 1993; 73 1997; 185 2000; 97 1999; 12 1999; 11 2006; 281 2007; 20 1998; 95 1992; 89 2002; 30 2002; 130 2007; 120 2003; 35 1996; 93 1999; 67 1999; 66 2005; 43 2007; 52 1999; 189 2001; 126 2003; 132 1996; 12 2003; 34 1997; 322 1990; 2 1996; 318 2004; 50 1997; 33 2000; 347 1995; 108 1999; 37 2001; 9 1999; 111 1999; 397 2005; 55 1995; 182 2001; 359 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Guzman P. (e_1_2_6_26_1) 1990; 2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 Nawrath C. (e_1_2_6_39_1) 1999; 11 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 Gaymard F. (e_1_2_6_18_1) 1996; 318 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 318 start-page: 67 issue: Pt 1 year: 1996 end-page: 73 article-title: Characterization of a ferritin mRNA from accumulated in response to iron through an oxidative pathway independent of abscisic acid publication-title: Biochem. J. – volume: 2 start-page: 513 year: 1990 end-page: 523 article-title: Exploiting the triple response of Arabidopsis to identify ethylene‐related mutants publication-title: Plant Cell – volume: 30 start-page: 521 year: 2002 end-page: 528 article-title: Nitric oxide mediates iron‐induced ferritin accumulation in Arabidopsis publication-title: Plant J. – volume: 189 start-page: 6773 year: 2007 end-page: 6786 article-title: Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants publication-title: J. Bacteriol. – volume: 14 start-page: 1405 year: 2002 end-page: 1415 article-title: Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole‐3‐acetic acids in an assay for adenylation publication-title: Plant Cell – volume: 322 start-page: 681 issue: Pt 3 year: 1997 end-page: 692 article-title: Oxidative burst: an early plant response to pathogen infection publication-title: Biochem. J. – volume: 189 start-page: 831 year: 1999 end-page: 841 article-title: The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes publication-title: J. Exp. Med. – volume: 66 start-page: 113 year: 1999 end-page: 119 article-title: Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169 publication-title: J. Leukoc. Biol. – volume: 132 start-page: 796 year: 2003 end-page: 804 article-title: Dual regulation of the Arabidopsis high‐affinity root iron uptake system by local and long‐distance signals publication-title: Plant Physiol. – volume: 33 start-page: 1085 year: 1997 end-page: 1092 article-title: Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions publication-title: Plant Mol. Biol. – volume: 2 start-page: 946 year: 2004 end-page: 953 article-title: Iron and microbial infection publication-title: Nat. Rev. Microbiol. – volume: 347 start-page: 749 year: 2000 end-page: 755 article-title: Involvement of NRAMP1 from in iron transport publication-title: Biochem. J. – volume: 15 start-page: 1181 year: 2002 end-page: 1191 article-title: Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937 publication-title: Mol. Plant Microbe Interact. – volume: 55 start-page: 261 year: 2005 end-page: 275 article-title: Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection publication-title: Mol. Microbiol. – volume: 9 start-page: 397 year: 2001 end-page: 403 article-title: Divalent‐metal transport by NRAMP proteins at the interface of host‐pathogen interactions publication-title: Trends Microbiol. – volume: 20 start-page: 794 year: 2007 end-page: 805 article-title: expresses multiple lines of defense to counterattack Erwinia chrysanthemi publication-title: Mol. Plant Microbe Interact. – volume: 108 start-page: 1353 year: 1995 end-page: 1358 article-title: Plant defensins: novel antimicrobial peptides as components of the host defense system publication-title: Plant Physiol. – volume: 34 start-page: 685 year: 2003 end-page: 695 article-title: AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency publication-title: Plant J. – volume: 34 start-page: 217 year: 2003 end-page: 228 article-title: Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping publication-title: Plant J. – volume: 136 start-page: 2621 year: 2004 end-page: 2632 article-title: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox publication-title: Plant Physiol. – volume: 43 start-page: 793 year: 2005 end-page: 801 article-title: Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+‐transport abilities publication-title: Plant Physiol. Biochem. – volume: 52 start-page: 949 year: 2007 end-page: 960 article-title: Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots publication-title: Plant J. – volume: 126 start-page: 1646 year: 2001 end-page: 1667 article-title: Phylogenetic relationships within cation transporter families of Arabidopsis publication-title: Plant Physiol. – volume: 37 start-page: 307 year: 1999 end-page: 334 article-title: Withholding and exchanging Iron: interactions between Erwinia spp. and their plant hosts publication-title: Annu. Rev. Phytopathol. – volume: 35 start-page: 295 year: 2003 end-page: 304 article-title: The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport publication-title: Plant J. – volume: 7 start-page: 449 year: 2004 end-page: 455 article-title: Nitric oxide: a new player in plant signalling and defence responses publication-title: Curr. Opin. Plant Biol. – volume: 20 start-page: 347 year: 2007 end-page: 353 article-title: Ferritins, bacterial virulence and plant defence publication-title: Biometals – volume: 95 start-page: 429 year: 1998 end-page: 430 article-title: Self‐defense: the fruit fly style publication-title: Proc. Natl Acad. Sci. USA – volume: 397 start-page: 694 year: 1999 end-page: 697 article-title: A ferric‐chelate reductase for iron uptake from soils publication-title: Nature – volume: 43 start-page: 262 year: 2005 end-page: 272 article-title: Siderophore‐mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection publication-title: Plant J. – volume: 5 start-page: 865 year: 1993 end-page: 875 article-title: RPS2, an Arabidopsis disease resistance locus specifying recognition of strains expressing the avirulence gene avrRpt2 publication-title: Plant Cell – volume: 182 start-page: 655 year: 1995 end-page: 666 article-title: The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene publication-title: J. Exp. Med. – volume: 67 start-page: 1386 year: 1999 end-page: 1392 article-title: Role of iron in Nramp1‐mediated inhibition of mycobacterial growth publication-title: Infect. Immun. – volume: 12 start-page: 201 year: 1996 end-page: 204 article-title: Resistance to intracellular infections: comparative genomic analysis of Nramp publication-title: Trends Genet. – volume: 99 start-page: 517 year: 2002 end-page: 522 article-title: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response publication-title: Proc. Natl Acad. Sci. USA – volume: 50 start-page: 1141 year: 2004 end-page: 1150 article-title: Regulation and Function of AtNRAMP4 Metal Transporter Protein publication-title: Soil Sci. Plant Nutr. – volume: 120 start-page: 596 year: 2007 end-page: 605 article-title: Targeted alterations in iron homeostasis underlie plant defense responses publication-title: J. Cell Sci. – volume: 388 start-page: 482 year: 1997 end-page: 488 article-title: Cloning and characterization of a mammalian proton‐coupled metal‐ion transporter publication-title: Nature – volume: 211 start-page: 295 year: 2006 end-page: 314 article-title: Iron‐withholding strategy in innate immunity publication-title: Immunobiology – volume: 124 start-page: 1477 year: 2000 end-page: 1480 article-title: Seed and molecular resources for Arabidopsis publication-title: Plant Physiol. – volume: 284 start-page: 2148 year: 1999 end-page: 2152 article-title: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis publication-title: Science – volume: 89 start-page: 6837 year: 1992 end-page: 6840 article-title: Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an mutant publication-title: Proc. Natl Acad. Sci. USA – volume: 97 start-page: 4991 year: 2000 end-page: 4996 article-title: Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 195 year: 1999 end-page: 199 article-title: Iron and activated oxygen species in biology: the basic chemistry publication-title: Biometals – volume: 93 start-page: 5624 year: 1996 end-page: 5628 article-title: A novel iron‐regulated metal transporter from plants identified by functional expression in yeast publication-title: Proc. Natl Acad. Sci. USA – volume: 15 start-page: 165 year: 2003 end-page: 178 article-title: ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense publication-title: Plant Cell – volume: 359 start-page: 575 year: 2001 end-page: 582 article-title: Structure and differential expression of the four members of the ferritin gene family publication-title: Biochem. J. – volume: 24 start-page: 4041 year: 2005 end-page: 4051 article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron publication-title: EMBO J. – volume: 73 start-page: 469 year: 1993 end-page: 485 article-title: Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg publication-title: Cell – volume: 59 start-page: 1428 year: 2002 end-page: 1459 article-title: The superoxide‐generating NADPH oxidase: structural aspects and activation mechanism publication-title: Cell. Mol. Life Sci. – volume: 111 start-page: 283 year: 1999 end-page: 289 article-title: The Nramp1 protein and its role in resistance to infection and macrophage function publication-title: Proc. Assoc. Am. Physicians – volume: 185 start-page: 717 year: 1997 end-page: 730 article-title: Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome publication-title: J. Exp. Med. – volume: 281 start-page: 23579 year: 2006 end-page: 23588 article-title: An iron‐induced nitric oxide burst precedes ubiquitin‐dependent protein degradation for Arabidopsis ferritin gene expression publication-title: J. Biol. Chem. – volume: 99 start-page: 15705 year: 2002 end-page: 15710 article-title: Host‐pathogen interactions: host resistance factor Nramp1 up‐regulates the expression of Salmonella pathogenicity island‐2 virulence genes publication-title: Proc. Natl Acad. Sci. USA – volume: 11 start-page: 1393 year: 1999 end-page: 1404 article-title: Salicylic acid induction‐deficient mutants of Arabidopsis express PR‐2 and PR‐5 and accumulate high levels of camalexin after pathogen inoculation publication-title: Plant Cell – volume: 130 start-page: 1852 year: 2002 end-page: 1859 article-title: Nitric oxide improves internal iron availability in plants publication-title: Plant Physiol. – volume: 278 start-page: 24697 year: 2003 end-page: 24704 article-title: Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato publication-title: J. Biol. Chem. – volume: 72 start-page: 1493 year: 2006 end-page: 1505 article-title: NF‐kappaB activation by reactive oxygen species: fifteen years later publication-title: Biochem. Pharmacol. – ident: e_1_2_6_30_1 doi: 10.1105/tpc.5.8.865 – ident: e_1_2_6_55_1 doi: 10.1016/j.pbi.2004.04.002 – ident: e_1_2_6_47_1 doi: 10.1105/tpc.000885 – ident: e_1_2_6_46_1 doi: 10.1073/pnas.89.15.6837 – ident: e_1_2_6_13_1 doi: 10.1146/annurev.phyto.37.1.307 – ident: e_1_2_6_41_1 doi: 10.1042/bj3590575 – ident: e_1_2_6_6_1 doi: 10.1007/s10534-006-9069-0 – ident: e_1_2_6_28_1 doi: 10.1046/j.1365-313X.2003.01802.x – ident: e_1_2_6_4_1 doi: 10.1023/A:1005723304911 – volume: 2 start-page: 513 year: 1990 ident: e_1_2_6_26_1 article-title: Exploiting the triple response of Arabidopsis to identify ethylene‐related mutants publication-title: Plant Cell contributor: fullname: Guzman P. – ident: e_1_2_6_50_1 doi: 10.1073/pnas.012452499 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-2958.2004.04383.x – ident: e_1_2_6_48_1 doi: 10.1073/pnas.97.9.4991 – ident: e_1_2_6_37_1 doi: 10.1016/j.plaphy.2005.07.006 – ident: e_1_2_6_8_1 doi: 10.1046/j.1525-1381.1999.99236.x – ident: e_1_2_6_49_1 doi: 10.1046/j.1365-313X.2003.01760.x – ident: e_1_2_6_27_1 doi: 10.1128/JB.00827-07 – ident: e_1_2_6_33_1 doi: 10.1242/jcs.001362 – ident: e_1_2_6_23_1 doi: 10.1084/jem.185.4.717 – ident: e_1_2_6_35_1 doi: 10.1104/pp.126.4.1646 – ident: e_1_2_6_59_1 doi: 10.1128/IAI.67.3.1386-1392.1999 – volume: 11 start-page: 1393 year: 1999 ident: e_1_2_6_39_1 article-title: Salicylic acid induction‐deficient mutants of Arabidopsis express PR‐2 and PR‐5 and accumulate high levels of camalexin after pathogen inoculation publication-title: Plant Cell contributor: fullname: Nawrath C. – ident: e_1_2_6_14_1 doi: 10.1094/MPMI-20-7-0794 – ident: e_1_2_6_2_1 doi: 10.1126/science.284.5423.2148 – ident: e_1_2_6_24_1 doi: 10.1084/jem.189.5.831 – ident: e_1_2_6_32_1 doi: 10.1038/sj.emboj.7600864 – ident: e_1_2_6_57_1 doi: 10.1073/pnas.252415599 – ident: e_1_2_6_36_1 doi: 10.1073/pnas.95.2.429 – ident: e_1_2_6_16_1 doi: 10.1094/MPMI.2002.15.11.1181 – volume: 318 start-page: 67 issue: 1 year: 1996 ident: e_1_2_6_18_1 article-title: Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid publication-title: Biochem. J. doi: 10.1042/bj3180067 contributor: fullname: Gaymard F. – ident: e_1_2_6_44_1 doi: 10.1038/nrmicro1046 – ident: e_1_2_6_38_1 doi: 10.1046/j.1365-313X.2002.01312.x – ident: e_1_2_6_3_1 doi: 10.1074/jbc.M602135200 – ident: e_1_2_6_10_1 doi: 10.1042/bj3470749 – ident: e_1_2_6_53_1 doi: 10.1084/jem.182.3.655 – ident: e_1_2_6_56_1 doi: 10.1042/bj3220681 – ident: e_1_2_6_22_1 doi: 10.1104/pp.009076 – ident: e_1_2_6_40_1 doi: 10.1016/j.imbio.2006.02.004 – ident: e_1_2_6_42_1 doi: 10.1023/A:1009252919854 – ident: e_1_2_6_43_1 doi: 10.1038/17800 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.93.11.5624 – ident: e_1_2_6_19_1 doi: 10.1046/j.1365-313X.2003.01717.x – ident: e_1_2_6_11_1 doi: 10.1111/j.1365-313X.2005.02451.x – ident: e_1_2_6_5_1 doi: 10.1074/jbc.M301365200 – ident: e_1_2_6_20_1 doi: 10.1016/j.bcp.2006.04.011 – ident: e_1_2_6_51_1 doi: 10.1104/pp.102.016089 – ident: e_1_2_6_52_1 doi: 10.1016/0092-8674(93)90135-D – ident: e_1_2_6_34_1 doi: 10.1105/tpc.007468 – ident: e_1_2_6_54_1 doi: 10.1007/s00018-002-8520-9 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-313X.2007.03283.x – ident: e_1_2_6_31_1 doi: 10.1080/00380768.2004.10408587 – ident: e_1_2_6_7_1 doi: 10.1104/pp.108.4.1353 – ident: e_1_2_6_29_1 doi: 10.1002/jlb.66.1.113 – ident: e_1_2_6_58_1 doi: 10.1104/pp.104.046367 – ident: e_1_2_6_45_1 doi: 10.1104/pp.124.4.1477 – ident: e_1_2_6_25_1 doi: 10.1038/41343 – ident: e_1_2_6_9_1 doi: 10.1016/0168-9525(96)30042-5 – ident: e_1_2_6_15_1 doi: 10.1016/S0966-842X(01)02098-4 |
SSID | ssj0017364 |
Score | 2.281205 |
Snippet | AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion transporter... Summary AtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1/Slc11A1 metal ion... SummaryAtNRAMP3 and AtNRAMP4 are two Arabidopsis metal transporters sharing about 50% sequence identity with mouse NRAMP1. The NRAMP1-Slc11A1 metal ion... |
SourceID | hal proquest crossref pubmed pascalfrancis wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 195 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Arabidopsis - immunology Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Bacteria Bacterial plant pathogens Biological and medical sciences Botany Cation Transport Proteins Cation Transport Proteins - genetics Cation Transport Proteins - metabolism DNA, Plant DNA, Plant - genetics Erwinia chrysanthemi Ferritins Ferritins - genetics Ferritins - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant Genes, Plant Genetics Immunity, Innate Iron Iron - deficiency Life Sciences Metals Mutation NRAMP Oligonucleotide Array Sequence Analysis Oxidative Stress Pathology. Damages, economic importance Pectobacterium chrysanthemi Pectobacterium chrysanthemi - growth & development Phytopathology. Animal pests. Plant and forest protection plant defense Plant Leaves Plant Leaves - genetics Plant Leaves - immunology Plant Leaves - metabolism Plant Leaves - microbiology Plant pathology Plant Roots Plant Roots - genetics Plant Roots - immunology Plant Roots - metabolism Plants, Genetically Modified Plants, Genetically Modified - genetics Plants, Genetically Modified - immunology Plants, Genetically Modified - metabolism Plants, Genetically Modified - microbiology Pseudomonas syringae Vegetal Biology |
Title | NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2008.03775.x https://www.ncbi.nlm.nih.gov/pubmed/19121106 https://www.proquest.com/docview/213504230 https://search.proquest.com/docview/20582828 https://search.proquest.com/docview/67200406 https://hal.science/hal-00855505 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ta9swED62sg-Dsfe1XtdOjH11sKT47WO2tYSyldI1kH0Skiw3oWCH2hnrfv3u_LamtFDGIJgQycI-n-6es548AvgYBJnQmXB-kNrQH0fc-AaRhT_WqbVhzikHEtviOJrOxkfzcN7xn-i_MK0-xPDCjWZGE69pgmtTbU5yYmhJLucdJVLGcTgiPMllTOyuL6eDkhSPZaskhYDdxyR6g9Rz60Abmephrks8Logt-WSlKzRg3u58cRs03US6Tao6fAYX_U22DJWL0bo2I_v7hv7j_7HCc3jaIVo2aV3wBTxwxUt49KlE1Hn1Cn4cn06-nbBzCqmMkig5AlsW2F-bZVauqmXF6kXztkUzrP0Jz6IjsrpkB6ROvNTMLi6vKvQA0jZgPXuseA2zw4Ozz1O_287BtyGXeI2W6zxFhEa0sVAkJrKJQIfg-MHCMxMiR7AqRU76yKmzaYylYZZpnYRR7HIj38BWURZuBxiJtkvnAmdlMsYKyWSGZzIXVhiD0TvygPePTq1a1Q51rdpBiymyWLcHJ1lM_fJgB5-x0ucYXNXsu6AlXYTDERZkHnxAOwwjkSL3dPJV0W8Nzw9R5E_uwf6GXwzdBQ6EPQIPdntHUV2gqKgxJGoStr4fWnGG07KNLly5xi4BLW2K5O4eUUyxLsDr3G797-9NpyThRy1R40X3toY6Ozmib2__9cRdeNwvvAX8HWzVl2u3h_itNvvNzPwDEgsyVg |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9swEBddO9hgrO1e9foSY18dLCl-fcy2lrRLQ-kSyD4JSZabsGGH2hnr_vrd-bWldDDGIIQQXYR9vsfvpMtPhLz1vISrhFvXi43v9gOmXQ3Iwu2r2Bg_ZZgDsdtiHAyn_fOZP2uOA8L_wtT8EN2CG3pGFa_RwXFBet3LsUVLMDFreiJFGPo9AJRb4P0Cz3H4cNVxSbFQ1FxSANldSKN32nrunWktVz1IVQ7vc-yXfLJUBagwrc--uA-crmPdKlmdbpOv7W3WPSpfeqtS98yPOwyQ_0kPO-RpA2rpoLbCXbJhs2fk4bscgOftc_J5fDW4uKTXGFUp5lG0BbrIQF7pRZIvi0VBy3m14KIolP8IacEWaZnTEyQoXihq5je3BRgB0hvQtoEse0GmpyeT90O3OdHBNT4TcI2GqTQGkIadYz6PdGAiDjbB4AW1Z8J5CnhV8BQpkmNr4hCqwyRRKvKD0KZavCSbWZ7ZPUKRt11Y61kjoj4USTrRLBEpN1xrCOCBQ1j77OSyJu6QvxU8oDGJGmuO4USNye8O2YOHLNU1xFc5_cRxVxcQcQA1mUPegB66mZCUezgYSfyuavUDIPmNOeRozTA6cQ4TgYTnkP3WUmQTKwoc9LE7CUaPu1Fwcty5UZnNVyDi4e4mj_4sEYQY7jy4zle1Af666RhZ_HAkqMzor7UhJ5fn-On1v_7wmDwaTi5GcnQ2_rhPHrf7cB47IJvlzcoeApwr9VHlpj8BMBo2bg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ta9swEBZbN8ZgdG_d6nZrxdhXB0vy68e0a8i6LoSugeyTkGS5CQU71M5Y9-t357ctpYMxBsGESBb2-XT3nPXkESHvPS_lKuXW9RITuH7ItKsBWbi-SowJMoY5ENkWk3A880_nwbzlP-F_YRp9iP6FG86MOl7jBF-l2eYkR4aWYGLeUiJFFAUDwJMP_BCAMAKk815KikWikZICxO5CFr3F6rlzpI1UdT9TBRwXSJd8slIlWDBrtr64C5tuQt06V42ekqvuLhuKytVgXemB-XFLAPL_mOEZ2W4hLR02Pvic3LP5C_LwqADYefOSfJ2cDz9P6SXGVIpZFD2BLnPor_QyLVblsqTVon7doigU_whowRNpVdATlCdeKmoW1zcluACKG9COPpbvkNno5OJ47Lb7ObgmYAKu0TCVJQDRkDcW8FiHJubgEQw-UHmmnGeAVgXPUCA5sSaJoDZMU6XiIIxspsUrspUXud0lFFXbhbWeNSL2oUTSqWapyLjhWkP4Dh3CukcnV41sh_yt3AGLSbRYuwknWkx-d8guPGOpLiG6ytkXjmu6gIdDqMgc8g7s0I-Ektzj4ZnE32qiH8DIb8whBxt-0XfnMBD08Byy3zmKbCNFiY0BcpOg9bBvhSmO6zYqt8Uauni4tsnjP_cIIwx2Hlzn68b_ft10ghp-2BLWXvTX1pAX01P8tvevJx6SR9MPI3n2cfJpnzzuFuE89oZsVddr-xawXKUP6kn6E0euNR0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NRAMP+genes+function+in+Arabidopsis+thaliana+resistance+to+Erwinia+chrysanthemi+infection&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Segond%2C+Diego&rft.au=Dellagi%2C+Alia&rft.au=Lanquar%2C+Viviane&rft.au=Rigault%2C+Martine&rft.date=2009-04-01&rft.pub=Wiley&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=58&rft.issue=2&rft.spage=195&rft.epage=207&rft_id=info:doi/10.1111%2Fj.1365-313X.2008.03775.x&rft_id=info%3Apmid%2F19121106&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00855505v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |