Demonstration of full tensor current density imaging using ultra-low field MRI
Direct imaging of impressed dc currents inside the head can provide valuable conductivity information, possibly improving electro-magnetic neuroimaging. Ultra-low field magnetic resonance imaging (ULF MRI) at μT Larmor fields can be utilized for current density imaging (CDI). Here, a measurable impa...
Saved in:
Published in | Magnetic resonance imaging Vol. 60; pp. 137 - 144 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Direct imaging of impressed dc currents inside the head can provide valuable conductivity information, possibly improving electro-magnetic neuroimaging. Ultra-low field magnetic resonance imaging (ULF MRI) at μT Larmor fields can be utilized for current density imaging (CDI). Here, a measurable impact of the magnetic field BJ, generated by the impressed current density J, on the MR signal is probed using specialized sequences. In contrast to high-field MRI, the full tensor of BJ can be derived without rotation of the subject in the scanner, due to a larger flexibility in the sequence design.
We present an ULF MRI setup based on a superconducting quantum interference device (SQUID), which is operating at a noise level of 380 aT Hz−1/2 and capable of switching all imaging fields within a pulse sequence. Thereby, the system enables zero-field encoding, where the full tensor of BJ is probed in the absence of other magnetic fields. 3D CDI is demonstrated on phantoms with different geometries carrying currents of approximately 2 mA corresponding to current densities between 0.45 and 8 A/m2. By comparison to an in vivo acquired head image, we provide insights to necessary improvements in signal-to-noise ratio. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0730-725X 1873-5894 1873-5894 |
DOI: | 10.1016/j.mri.2019.03.010 |