Impact of control schemes of a monovalent inverter-driven water-to-water heat pump with a desuperheater in continental and subtropical climates through simulation

► An application of a steady-state simulation for a monovalent heat pump is presented. ► The operation modes of the system were configured into control schemes for testing. ► The seasonal performance of two Japanese cities was obtained using the control schemes. ► No scheme could minimize both cost...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 109; pp. 374 - 386
Main Authors Blanco, David L., Nagano, Katsunori, Morimoto, Masahiro
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2013
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2012.12.047

Cover

Loading…
Abstract ► An application of a steady-state simulation for a monovalent heat pump is presented. ► The operation modes of the system were configured into control schemes for testing. ► The seasonal performance of two Japanese cities was obtained using the control schemes. ► No scheme could minimize both cost and electrical consumption for both locations. ► A tradeoff between cost and electrical charge was identified for the coldest city. An application of a novel steady-state simulation of a monovalent inverter-driven water-to-water heat pump with a desuperheater is presented. The simulation is capable of modeling and managing the different operation modes of the system such as combined space heating and domestic hot water, in order to provide realistic results, from which four control schemes based on two electricity tariff plans were developed. The schemes were tested on a subject low energy house for Tokyo and Sapporo, in Japan, for the coldest day of the year and for the heating season. Emphasis was given to the short-term domestic hot water storage. The results show that the application of the schemes with a flexible electricity tariff had lower cost over the scheme that used the flat rate pricing plan. Moreover, it was shown that no unique scheme was able to minimize the cost and electrical consumption for both locations. Additionally, a tradeoff between lowest cost and lowest energy consumption was identified for Sapporo. The results of this research could be applied to develop a more robust control on monovalent heat pump systems.
AbstractList An application of a novel steady-state simulation of a monovalent inverter-driven water-to-water heat pump with a desuperheater is presented. The simulation is capable of modeling and managing the different operation modes of the system such as combined space heating and domestic hot water, in order to provide realistic results, from which four control schemes based on two electricity tariff plans were developed. The schemes were tested on a subject low energy house for Tokyo and Sapporo, in Japan, for the coldest day of the year and for the heating season. Emphasis was given to the short-term domestic hot water storage. The results show that the application of the schemes with a flexible electricity tariff had lower cost over the scheme that used the flat rate pricing plan. Moreover, it was shown that no unique scheme was able to minimize the cost and electrical consumption for both locations. Additionally, a tradeoff between lowest cost and lowest energy consumption was identified for Sapporo. The results of this research could be applied to develop a more robust control on monovalent heat pump systems.
► An application of a steady-state simulation for a monovalent heat pump is presented. ► The operation modes of the system were configured into control schemes for testing. ► The seasonal performance of two Japanese cities was obtained using the control schemes. ► No scheme could minimize both cost and electrical consumption for both locations. ► A tradeoff between cost and electrical charge was identified for the coldest city. An application of a novel steady-state simulation of a monovalent inverter-driven water-to-water heat pump with a desuperheater is presented. The simulation is capable of modeling and managing the different operation modes of the system such as combined space heating and domestic hot water, in order to provide realistic results, from which four control schemes based on two electricity tariff plans were developed. The schemes were tested on a subject low energy house for Tokyo and Sapporo, in Japan, for the coldest day of the year and for the heating season. Emphasis was given to the short-term domestic hot water storage. The results show that the application of the schemes with a flexible electricity tariff had lower cost over the scheme that used the flat rate pricing plan. Moreover, it was shown that no unique scheme was able to minimize the cost and electrical consumption for both locations. Additionally, a tradeoff between lowest cost and lowest energy consumption was identified for Sapporo. The results of this research could be applied to develop a more robust control on monovalent heat pump systems.
Author Blanco, David L.
Nagano, Katsunori
Morimoto, Masahiro
Author_xml – sequence: 1
  givenname: David L.
  surname: Blanco
  fullname: Blanco, David L.
  email: david.blanco.ch@eng.hokudai.ac.jp, david.blanco.ch@gmail.com
– sequence: 2
  givenname: Katsunori
  surname: Nagano
  fullname: Nagano, Katsunori
– sequence: 3
  givenname: Masahiro
  surname: Morimoto
  fullname: Morimoto, Masahiro
BookMark eNqFkcFu1DAQhi1UJLaFVwAfuWTx2HGSlTiAqgKVKnGAni3HmWy8SuxgO1v1dXhSnF24cFnJkj3j75_RzH9Nrpx3SMhbYFtgUH04bPWMDsP-ecsZ8G0-rKxfkA00NS92AM0V2TDBqoJXsHtFrmM8MMY4cLYhv--nWZtEfU-Ndyn4kUYz4IRxTWk6eeePekSXqHVHDAlD0QV7REef9BokX5wedECd6LxMM32yacjSDuMyY1jz-du6UwPrcik9Uu06Gpc2N5ytybEZ7ZS5SNMQ_LIfaLTTMupkvXtNXvZ6jPjm731DHr_c_bz9Vjx8_3p_-_mhMBJ4KrCVPUJpJNdClqilbKqd0E1remBG9Bnq6pqh1K3AdleV0IoSdnWNbdU2wogb8v5cdw7-14IxqclGg-OoHfolKp6XxgSXVXkRBcmkKGXJeUarM2qCjzFgr-aQRw3PCpha_VMH9c8_tfqn8sn-ZeHH_4TGptNCUtB2vCx_d5b32iu9Dzaqxx8ZqPIQ0EiATHw6E5iXerQYVDQWncHOBjRJdd5eavIHL6zLQg
CitedBy_id crossref_primary_10_1016_j_apenergy_2013_05_042
crossref_primary_10_1016_j_ecmx_2020_100040
crossref_primary_10_1016_j_jobe_2022_104002
crossref_primary_10_1016_j_ijrefrig_2016_05_014
crossref_primary_10_3390_en13123133
crossref_primary_10_1016_j_applthermaleng_2016_05_110
Cites_doi 10.1016/j.enbuild.2009.12.013
10.1016/j.apenergy.2010.06.014
10.1016/j.buildenv.2004.08.030
10.1016/S0378-7788(02)00110-X
10.1016/j.enconman.2003.10.013
10.1016/j.apenergy.2004.04.005
10.1109/TCS.1979.1084580
10.1016/j.apenergy.2012.01.048
10.1016/j.applthermaleng.2012.07.008
10.1016/j.ijheatmasstransfer.2012.06.089
10.1016/j.renene.2007.07.006
10.1016/j.applthermaleng.2007.12.013
10.1016/j.enbuild.2005.08.003
10.1016/j.ijrefrig.2005.07.006
10.1016/j.ijrefrig.2012.07.005
10.1016/j.ijheatmasstransfer.2012.03.084
10.1016/j.applthermaleng.2005.12.003
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID FBQ
AAYXX
CITATION
7ST
C1K
SOI
7S9
L.6
DOI 10.1016/j.apenergy.2012.12.047
DatabaseName AGRIS
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Environment Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 386
ExternalDocumentID 10_1016_j_apenergy_2012_12_047
US201600018511
S0306261912009385
GeographicLocations Japan, Honshu, Tokyo Prefect., Tokyo
Japan, Hokkaido, Sapporo
Japan
GeographicLocations_xml – name: Japan, Honshu, Tokyo Prefect., Tokyo
– name: Japan, Hokkaido, Sapporo
– name: Japan
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
C1K
EFKBS
SOI
7S9
L.6
ID FETCH-LOGICAL-c512t-eb5fe14c52a354ea558693a8bcf10c3f512d770e5ab3eb9641b341977eb6b83c3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Sep 05 12:30:22 EDT 2025
Thu Sep 04 16:46:57 EDT 2025
Tue Jul 01 03:05:18 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Wed Dec 27 19:20:36 EST 2023
Fri Feb 23 02:36:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Heating
Coefficient of performance
Hot water
Ground source heat pump
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-eb5fe14c52a354ea558693a8bcf10c3f512d770e5ab3eb9641b341977eb6b83c3
Notes http://dx.doi.org/10.1016/j.apenergy.2012.12.047
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/2115/54017
PQID 1505345422
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_2000032564
proquest_miscellaneous_1505345422
crossref_primary_10_1016_j_apenergy_2012_12_047
crossref_citationtrail_10_1016_j_apenergy_2012_12_047
fao_agris_US201600018511
elsevier_sciencedirect_doi_10_1016_j_apenergy_2012_12_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Blanco DL, Nagano K, Morimoto M. Experimental study on a monovalent inverter-driven water-to-water heat pump with a desuperheater for low energy houses. Appl Therm Eng 2013;50(1):826–836.
ASHRAE. Energy estimating and modeling methods, ASHRAE Fundam; 2001.
Yavuzturk, Spitler, Rees (b0075) 1999; 105
Yamamoto N, Murakawa S, Takata H, et al. A study on the loads of hot water consumption in houses with the hot water storage tank system – Part 1. An analysis of the hot water usage and the loads of hot water consumption. In: Proceedings of the international symposium water supply and drainage for buildings, Sydney, November 8–10; 2010.
Hokkaido Electric Power Co., Inc. web portal. Home electricity tariff plans; 2012.
Shao, Shi, Li, Ma (b0030) 2004; 45
Carsten W. IEA HPP Annex 32 final report IEA HPP Annex 32 economical heating and cooling systems for low energy houses – project outline and summary of main results.
Nam, Ooka, Shiba (b0020) 2010; 42
Blanco DL, Nagano K, Morimoto M. Steady state vapor compression refrigeration cycle simulation for a monovalent inverter-driven water-to-water heat pump with a desuperheater for low energy houses. Int J Refrig 2012;35(7)1833–1847.
Katsura, Nagano, Takeda (b0085) 2008; 28
Chua, Chou, Yang (b0010) 2010; 87
Ozgener, Hepbasli (b0025) 2005; 40
Takeda-Kindaichi S, Nagano K, Katsura T, Hori S, Shibata K. System performance of HVAC in a low energy house in the cold region of Japan. In: Proceedings of the 9th IEA heat pump conference, Zürich, May 20–22; 2008.
Architect Institute of Japan (b0110) 2000
Li H, Nagano K, Lai Y. Heat transfer of a horizontal spiral heat exchanger under groundwater advection. Int J Heat Mass Transfer 2012;55(23–24):6819–6831.
Ghiaus (b0060) 2003; 35
Ridders (b0125) 1979; CAS-26
Li, Nagano, Lai (b0090) 2012; 55
Ji, Pei, Chow (b0035) 2005; 80
Nagano, Katsura, Takeda (b0100) 2006; 26
[cited 2012.07.24] [in Japanese].
.
Lee, Lam (b0080) 2008; 33
SFS-EN ISO 13790. Thermal performance of buildings, calculation of energy use for space heating; 2004.
Stene (b0040) 2005; 28
Ghiaus (b0065) 2006; 38
Self, Reddy, Rosen (b0015) 2013; 101
Self (10.1016/j.apenergy.2012.12.047_b0015) 2013; 101
10.1016/j.apenergy.2012.12.047_b0140
10.1016/j.apenergy.2012.12.047_b0055
Nam (10.1016/j.apenergy.2012.12.047_b0020) 2010; 42
10.1016/j.apenergy.2012.12.047_b0115
10.1016/j.apenergy.2012.12.047_b0135
Architect Institute of Japan (10.1016/j.apenergy.2012.12.047_b0110) 2000
Ozgener (10.1016/j.apenergy.2012.12.047_b0025) 2005; 40
Ghiaus (10.1016/j.apenergy.2012.12.047_b0065) 2006; 38
Shao (10.1016/j.apenergy.2012.12.047_b0030) 2004; 45
Chua (10.1016/j.apenergy.2012.12.047_b0010) 2010; 87
10.1016/j.apenergy.2012.12.047_b0070
Katsura (10.1016/j.apenergy.2012.12.047_b0085) 2008; 28
10.1016/j.apenergy.2012.12.047_b0130
10.1016/j.apenergy.2012.12.047_b0050
Nagano (10.1016/j.apenergy.2012.12.047_b0100) 2006; 26
10.1016/j.apenergy.2012.12.047_b0045
Ridders (10.1016/j.apenergy.2012.12.047_b0125) 1979; CAS-26
10.1016/j.apenergy.2012.12.047_b0120
Li (10.1016/j.apenergy.2012.12.047_b0090) 2012; 55
Yavuzturk (10.1016/j.apenergy.2012.12.047_b0075) 1999; 105
Lee (10.1016/j.apenergy.2012.12.047_b0080) 2008; 33
Stene (10.1016/j.apenergy.2012.12.047_b0040) 2005; 28
Ghiaus (10.1016/j.apenergy.2012.12.047_b0060) 2003; 35
Ji (10.1016/j.apenergy.2012.12.047_b0035) 2005; 80
References_xml – volume: 28
  start-page: 1259
  year: 2005
  end-page: 1265
  ident: b0040
  article-title: Residential CO
  publication-title: Int J Refrig
– volume: 28
  start-page: 1995
  year: 2008
  end-page: 2004
  ident: b0085
  article-title: Method of calculation of the ground temperature for multiple ground heat exchangers
  publication-title: Appl Therm Eng
– volume: 80
  start-page: 307
  year: 2005
  end-page: 326
  ident: b0035
  article-title: Performance of multi-functional domestic heat-pump system
  publication-title: Appl Energy
– volume: 26
  start-page: 1578
  year: 2006
  end-page: 1592
  ident: b0100
  article-title: Development of a design and performance prediction tool for the ground source heat pump system
  publication-title: Appl Therm Eng
– reference: Li H, Nagano K, Lai Y. Heat transfer of a horizontal spiral heat exchanger under groundwater advection. Int J Heat Mass Transfer 2012;55(23–24):6819–6831. <
– reference: Blanco DL, Nagano K, Morimoto M. Experimental study on a monovalent inverter-driven water-to-water heat pump with a desuperheater for low energy houses. Appl Therm Eng 2013;50(1):826–836. <
– reference: Takeda-Kindaichi S, Nagano K, Katsura T, Hori S, Shibata K. System performance of HVAC in a low energy house in the cold region of Japan. In: Proceedings of the 9th IEA heat pump conference, Zürich, May 20–22; 2008.
– volume: 40
  start-page: 1040
  year: 2005
  end-page: 1050
  ident: b0025
  article-title: Performance analysis of a solar-assisted ground-source heat pump system for greenhouse heating: an experimental study
  publication-title: Build Environ
– volume: 45
  start-page: 2255
  year: 2004
  end-page: 2268
  ident: b0030
  article-title: A new inverter heat pump operated all year round with domestic hot water
  publication-title: Energy Convers Manage
– volume: 42
  start-page: 909
  year: 2010
  end-page: 916
  ident: b0020
  article-title: Development of dual-source hybrid heat pump system using groundwater and air
  publication-title: Energy Build
– volume: 35
  start-page: 405
  year: 2003
  end-page: 411
  ident: b0060
  article-title: Free-running building temperature and HVAC climatic suitability
  publication-title: Energy Build
– volume: 33
  start-page: 1286
  year: 2008
  end-page: 1296
  ident: b0080
  article-title: Computer simulation of borehole ground heat exchanger for geothermal heat pump systems
  publication-title: Renew Energy
– volume: 38
  start-page: 429
  year: 2006
  end-page: 435
  ident: b0065
  article-title: Equivalence between the load curve and the free-running temperature in energy estimating methods
  publication-title: Energy Build
– volume: 105
  start-page: 465
  year: 1999
  end-page: 474
  ident: b0075
  article-title: A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers
  publication-title: ASHRAE Trans
– reference: Carsten W. IEA HPP Annex 32 final report IEA HPP Annex 32 economical heating and cooling systems for low energy houses – project outline and summary of main results.
– reference: ASHRAE. Energy estimating and modeling methods, ASHRAE Fundam; 2001.
– reference: Blanco DL, Nagano K, Morimoto M. Steady state vapor compression refrigeration cycle simulation for a monovalent inverter-driven water-to-water heat pump with a desuperheater for low energy houses. Int J Refrig 2012;35(7)1833–1847. <
– reference: Yamamoto N, Murakawa S, Takata H, et al. A study on the loads of hot water consumption in houses with the hot water storage tank system – Part 1. An analysis of the hot water usage and the loads of hot water consumption. In: Proceedings of the international symposium water supply and drainage for buildings, Sydney, November 8–10; 2010.
– volume: CAS-26
  start-page: 979
  year: 1979
  end-page: 980
  ident: b0125
  article-title: A new algorithm for computing a single root of a real continuous function
  publication-title: Trans Circ Syst
– reference: >.
– reference: > [cited 2012.07.24] [in Japanese].
– reference: Hokkaido Electric Power Co., Inc. web portal. Home electricity tariff plans; 2012. <
– reference: SFS-EN ISO 13790. Thermal performance of buildings, calculation of energy use for space heating; 2004.
– volume: 101
  start-page: 341
  year: 2013
  end-page: 348
  ident: b0015
  article-title: Geothermal heat pump systems: status review and comparison with other heating options
  publication-title: Appl Energy
– volume: 87
  start-page: 3611
  year: 2010
  end-page: 3624
  ident: b0010
  article-title: Advances in heat pump systems: a review
  publication-title: Appl Energy
– volume: 55
  start-page: 4404
  year: 2012
  end-page: 4414
  ident: b0090
  article-title: A new model and solutions for a spiral heat exchanger and its experimental validation
  publication-title: Int J Heat Mass Transfer
– year: 2000
  ident: b0110
  article-title: Expanded AMeDAS weather data
– volume: 42
  start-page: 909
  issue: 6
  year: 2010
  ident: 10.1016/j.apenergy.2012.12.047_b0020
  article-title: Development of dual-source hybrid heat pump system using groundwater and air
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2009.12.013
– volume: 87
  start-page: 3611
  issue: 12
  year: 2010
  ident: 10.1016/j.apenergy.2012.12.047_b0010
  article-title: Advances in heat pump systems: a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.06.014
– ident: 10.1016/j.apenergy.2012.12.047_b0120
– volume: 40
  start-page: 1040
  issue: 8
  year: 2005
  ident: 10.1016/j.apenergy.2012.12.047_b0025
  article-title: Performance analysis of a solar-assisted ground-source heat pump system for greenhouse heating: an experimental study
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2004.08.030
– ident: 10.1016/j.apenergy.2012.12.047_b0055
– volume: 35
  start-page: 405
  issue: 4
  year: 2003
  ident: 10.1016/j.apenergy.2012.12.047_b0060
  article-title: Free-running building temperature and HVAC climatic suitability
  publication-title: Energy Build
  doi: 10.1016/S0378-7788(02)00110-X
– volume: 45
  start-page: 2255
  issue: 13–14
  year: 2004
  ident: 10.1016/j.apenergy.2012.12.047_b0030
  article-title: A new inverter heat pump operated all year round with domestic hot water
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2003.10.013
– volume: 80
  start-page: 307
  issue: 3
  year: 2005
  ident: 10.1016/j.apenergy.2012.12.047_b0035
  article-title: Performance of multi-functional domestic heat-pump system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.04.005
– volume: CAS-26
  start-page: 979
  issue: 11
  year: 1979
  ident: 10.1016/j.apenergy.2012.12.047_b0125
  article-title: A new algorithm for computing a single root of a real continuous function
  publication-title: Trans Circ Syst
  doi: 10.1109/TCS.1979.1084580
– ident: 10.1016/j.apenergy.2012.12.047_b0130
– volume: 101
  start-page: 341
  year: 2013
  ident: 10.1016/j.apenergy.2012.12.047_b0015
  article-title: Geothermal heat pump systems: status review and comparison with other heating options
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.01.048
– year: 2000
  ident: 10.1016/j.apenergy.2012.12.047_b0110
– ident: 10.1016/j.apenergy.2012.12.047_b0045
  doi: 10.1016/j.applthermaleng.2012.07.008
– ident: 10.1016/j.apenergy.2012.12.047_b0135
  doi: 10.1016/j.ijheatmasstransfer.2012.06.089
– volume: 33
  start-page: 1286
  issue: 6
  year: 2008
  ident: 10.1016/j.apenergy.2012.12.047_b0080
  article-title: Computer simulation of borehole ground heat exchanger for geothermal heat pump systems
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.07.006
– volume: 28
  start-page: 1995
  issue: 14–15
  year: 2008
  ident: 10.1016/j.apenergy.2012.12.047_b0085
  article-title: Method of calculation of the ground temperature for multiple ground heat exchangers
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.12.013
– ident: 10.1016/j.apenergy.2012.12.047_b0115
– volume: 38
  start-page: 429
  issue: 4
  year: 2006
  ident: 10.1016/j.apenergy.2012.12.047_b0065
  article-title: Equivalence between the load curve and the free-running temperature in energy estimating methods
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2005.08.003
– ident: 10.1016/j.apenergy.2012.12.047_b0070
– volume: 28
  start-page: 1259
  issue: 8
  year: 2005
  ident: 10.1016/j.apenergy.2012.12.047_b0040
  article-title: Residential CO2 heat pump system for combined space heating and hot water heating
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2005.07.006
– ident: 10.1016/j.apenergy.2012.12.047_b0050
– ident: 10.1016/j.apenergy.2012.12.047_b0140
  doi: 10.1016/j.ijrefrig.2012.07.005
– volume: 55
  start-page: 4404
  issue: 15–16
  year: 2012
  ident: 10.1016/j.apenergy.2012.12.047_b0090
  article-title: A new model and solutions for a spiral heat exchanger and its experimental validation
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.03.084
– volume: 105
  start-page: 465
  issue: 2
  year: 1999
  ident: 10.1016/j.apenergy.2012.12.047_b0075
  article-title: A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers
  publication-title: ASHRAE Trans
– volume: 26
  start-page: 1578
  issue: 14–15
  year: 2006
  ident: 10.1016/j.apenergy.2012.12.047_b0100
  article-title: Development of a design and performance prediction tool for the ground source heat pump system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.12.003
SSID ssj0002120
Score 2.1110272
Snippet ► An application of a steady-state simulation for a monovalent heat pump is presented. ► The operation modes of the system were configured into control schemes...
An application of a novel steady-state simulation of a monovalent inverter-driven water-to-water heat pump with a desuperheater is presented. The simulation is...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 374
SubjectTerms Coefficient of performance
electricity
energy
Ground source heat pump
heat
heat pumps
Heating
Hot water
Japan
prices
simulation
subtropics
tariffs
Title Impact of control schemes of a monovalent inverter-driven water-to-water heat pump with a desuperheater in continental and subtropical climates through simulation
URI https://dx.doi.org/10.1016/j.apenergy.2012.12.047
https://www.proquest.com/docview/1505345422
https://www.proquest.com/docview/2000032564
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYYe9ke0MaG6GDIk_Zq2vhHkzwiBCqbxgurxJtlO_YURJOoabU3_hj-Uu5cZzBtEw-T-pA6d4rVO5-_uHf3EfJZTU2Wm6pkE-49k6HIWAFvQixIQOPSZULGbvvfLqezufxyra63yOlQC4NplSn2b2J6jNZpZJx-zXFX1-MrRLuI_zM84BcFFppLmWP__OO7xzQPnlozgjBD6SdVwjfHpvOxwg5TvHg8FkSalb9vUC-Caf8I2HEXOn9DdhJ8pCebGb4lW77ZJa-fNBXcJXtnj7VrIJoWb_-O3F_EikjaBpoS1Cm82vqF73HIUHDIFvwO1GjdIE2zX7JqidGQ_jT4ZdWyeEExgNMOHIHiMS6oVr5fd36J43C7buIDYEpxBqapaL-28MAOPYK623qBCJcmjiDa14tEIvaezM_Pvp_OWKJoYA6Qwop5q4LPpFPcCCW9UaqYlsIU1oVs4kQAoSrPJ14ZK7wtpzKz2EAuRyYWWwgn9sh20zZ-n9C8KrkLlTBCBGmlM8oDnDCZs05Zq-yIqMEu2qX-5UijcauHRLUbPdhToz01fMCeIzL-pddtOng8q1EOZte_-aKGbeZZ3X3wE21-QIjW8yuODfyQ-BBw7Yh8GpxHwxrGP2ZM49t1rwGUK1gUkvN_y2BJ1UQAQJUf_mN6B-QVj3wemCR3SLZXy7X_CKhqZY_isjkiL08uvs4uHwB8HyXB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBba7rD1MGzdimZPDdhVTaxHbB-HokW6tb20AXoTJFkaXDS2ESfYbT9mv3SkIq8dtqGHATk4MgkLIUV9Vkh-hHxUU5PlpirZhHvPZCgyVsCbEAsS0Lh0mZCx2_75xXQ2l5-v1fUWORpqYTCtMsX-TUyP0TqNjNOvOe7qenyJaBfxf4YH_KJQ2-SRVCJH1z78fpfnwVNvRpBmKH6vTPjm0HQ-lthhjheP54LIs_L3HWo7mPaPiB23oZNn5GnCj_TTZorPyZZv9sjuva6Ce2T_-K54DUTT6u1fkB-nsSSStoGmDHUK77Z-4XscMhQ8sgXHAzVaN8jT7JesWmI4pN8Mflm1LF5QjOC0A0-geI4LqpXv151f4jjcrpv4AJhSnIFpKtqvLTywQ5eg7rZeIMSliSSI9vUisYi9JPOT46ujGUscDcwBVFgxb1XwmXSKG6GkN0oV01KYwrqQTZwIIFTl-cQrY4W35VRmFjvI5UjFYgvhxD7ZadrGHxCaVyV3oRJGiCCtdEZ5wBMmc9Ypa5UdETXYRbvUwBx5NG71kKl2owd7arSnhg_Yc0TGv_S6TQuPBzXKwez6N2fUsM88qHsAfqLNV4jRen7JsYMfMh8CsB2RD4PzaFjE-M-MaXy77jWgcgWrQnL-bxmsqZoIQKjy1X9M7z15PLs6P9NnpxdfXpMnPJJ7YMbcG7KzWq79W4BYK_suLqGfCqInVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+control+schemes+of+a+monovalent+inverter-driven+water-to-water+heat+pump+with+a+desuperheater+in+continental+and+subtropical+climates+through+simulation&rft.jtitle=Applied+energy&rft.au=Blanco%2C+David+L.&rft.au=Nagano%2C+Katsunori&rft.au=Morimoto%2C+Masahiro&rft.date=2013-09-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=109&rft.spage=374&rft.epage=386&rft_id=info:doi/10.1016%2Fj.apenergy.2012.12.047&rft.externalDocID=S0306261912009385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon