Structural correlates of affinity in fetal versus adult endplate nicotinic receptors

Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 7; no. 1; p. 11352
Main Authors Nayak, Tapan Kumar, Chakraborty, Srirupa, Zheng, Wenjun, Auerbach, Anthony
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.04.2016
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ∼30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs. Adult and fetal nicotinic acetylcholine receptors (AChRs) have different functional requirements and affinity for ACh. Here, the authors use molecular dynamics and electrophysiology to investigate this affinity, and identify four amino acids that when swapped exchange function between adult and fetal AChRs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms11352