Electrochemically driven mechanical energy harvesting

Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress–voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, sepa...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 7; no. 1; p. 10146
Main Authors Kim, Sangtae, Choi, Soon Ju, Zhao, Kejie, Yang, Hui, Gobbi, Giorgia, Zhang, Sulin, Li, Ju
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.01.2016
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress–voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson’s ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition–voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities. There is intensive research underway into the development of various mechanical energy harvesters. Here, the authors report an electrochemically driven mechanical energy harvester that uses the stress-induced potential difference of lithiated silicon electrodes to generate continuous electricity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10146