Optimizing the Treatment of Recycled Aggregate (>4 mm), Artificial Intelligence and Analytical Approaches

Attached, old mortar removal methods are evolving to improve recycled aggregate quality. Despite the improved quality of recycled aggregate, treatment of recycled aggregate at the required level cannot be obtained and predicted well. In the present study, an analytical approach was developed and pro...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 8; p. 2994
Main Author Dilbas, Hasan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Attached, old mortar removal methods are evolving to improve recycled aggregate quality. Despite the improved quality of recycled aggregate, treatment of recycled aggregate at the required level cannot be obtained and predicted well. In the present study, an analytical approach was developed and proposed to use the Ball Mill Method smartly. As a result, more interesting and unique results were found. One of the interesting results was the abrasion coefficient which was composed according to experimental test results; and the Abrasion Coefficient enables quick decision-making to get the best results for recycled aggregate before the Ball mill method application on recycled aggregate. The proposed approach provided an adjustment in water absorption of recycled aggregate, and the required reduction level in water absorption of recycled aggregate was easily achieved by accurately composing Ball Mill Method combinations (drum rotation-steel ball). In addition, artificial neural network models were built for the Ball Mill Method The artificial neural network input parameters were Ball Mill Method drum rotations, steel ball numbers and/or Abrasion Coefficient, and the output parameter was the water absorption of recycled aggregate. Training and testing processes were conducted using the Ball Mill Method results, and the results were compared with test data. Eventually, the developed approach gave the Ball Mill Method more ability and more effectiveness. Also, the predicted results of the proposed Abrasion Coefficient were found close to the experimental and literature data. Besides, an artificial neural network was found to be a useful tool for the prediction of water absorption of processed recycled aggregate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16082994