On convergence for hybrid models of gene regulatory networks under polytopic uncertainties: a Lyapunov approach
Hybrid models of genetic regulatory networks allow for a simpler analysis with respect to fully detailed quantitative models, still maintaining the main dynamical features of interest. In this paper we consider a piecewise affine model of a genetic regulatory network, in which the parameters describ...
Saved in:
Published in | Journal of mathematical biology Vol. 83; no. 6-7; p. 64 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hybrid models of genetic regulatory networks allow for a simpler analysis with respect to fully detailed quantitative models, still maintaining the main dynamical features of interest. In this paper we consider a piecewise affine model of a genetic regulatory network, in which the parameters describing the production function are affected by polytopic uncertainties. In the first part of the paper, after recalling how the problem of finding a Lyapunov function is solved in the nominal case, we present the considered polytopic uncertain system and then, after describing how to deal with sliding mode solutions, we prove a result of existence of a parameter dependent Lyapunov function subject to the solution of a feasibility linear matrix inequalities problem. In the second part of the paper, based on the previously described Lyapunov function, we are able to determine a set of domains where the system is guaranteed to converge, with the exception of a zero measure set of times, independently from the uncertainty realization. Finally a three nodes network example shows the validity of the results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0303-6812 1432-1416 1432-1416 |
DOI: | 10.1007/s00285-021-01690-3 |