Global Warming and the Weakening of the Tropical Circulation

This study examines the response of the tropical atmospheric and oceanic circulation to increasing greenhouse gases using a coordinated set of twenty-first-century climate model experiments performed for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The strengt...

Full description

Saved in:
Bibliographic Details
Published inJournal of climate Vol. 20; no. 17; pp. 4316 - 4340
Main Authors Vecchi, Gabriel A., Soden, Brian J.
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.09.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study examines the response of the tropical atmospheric and oceanic circulation to increasing greenhouse gases using a coordinated set of twenty-first-century climate model experiments performed for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The strength of the atmospheric overturning circulation decreases as the climate warms in all IPCC AR4 models, in a manner consistent with the thermodynamic scaling arguments of Held and Soden. The weakening occurs preferentially in the zonally asymmetric (i.e., Walker) rather than zonal-mean (i.e., Hadley) component of the tropical circulation and is shown to induce substantial changes to the thermal structure and circulation of the tropical oceans. Evidence suggests that the overall circulation weakens by decreasing the frequency of strong updrafts and increasing the frequency of weak updrafts, although the robustness of this behavior across all models cannot be confirmed because of the lack of data. As the climate warms, changes in both the atmospheric and ocean circulation over the tropical Pacific Ocean resemble “El Niño–like” conditions; however, the mechanisms are shown to be distinct from those of El Niño and are reproduced in both mixed layer and full ocean dynamics coupled climate models. The character of the Indian Ocean response to global warming resembles that of Indian Ocean dipole mode events. The consensus of model results presented here is also consistent with recently detected changes in sea level pressure since the mid–nineteenth century.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0894-8755
1520-0442
DOI:10.1175/jcli4258.1