Latent space manipulation for high-resolution medical image synthesis via the StyleGAN

This paper explores the potential of the StyleGAN model as an high-resolution image generator for synthetic medical images. The possibility to generate sample patient images of different modalities can be helpful for training deep learning algorithms as e.g. a data augmentation technique. The StyleG...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für medizinische Physik Vol. 30; no. 4; pp. 305 - 314
Main Authors Fetty, Lukas, Bylund, Mikael, Kuess, Peter, Heilemann, Gerd, Nyholm, Tufve, Georg, Dietmar, Löfstedt, Tommy
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper explores the potential of the StyleGAN model as an high-resolution image generator for synthetic medical images. The possibility to generate sample patient images of different modalities can be helpful for training deep learning algorithms as e.g. a data augmentation technique. The StyleGAN model was trained on Computed Tomography (CT) and T2- weighted Magnetic Resonance (MR) images from 100 patients with pelvic malignancies. The resulting model was investigated with regards to three features: Image Modality, Sex, and Longitudinal Slice Position. Further, the style transfer feature of the StyleGAN was used to move images between the modalities. The root-mean-squard error (RMSE) and the Mean Absolute Error (MAE) were used to quantify errors for MR and CT, respectively. We demonstrate how these features can be transformed by manipulating the latent style vectors, and attempt to quantify how the errors change as we move through the latent style space. The best results were achieved by using the style transfer feature of the StyleGAN (58.7 HU MAE for MR to CT and 0.339 RMSE for CT to MR). Slices below and above an initial central slice can be predicted with an error below 75 HU MAE and 0.3 RMSE within 4cm for CT and MR, respectively. The StyleGAN is a promising model to use for generating synthetic medical images for MR and CT modalities as well as for 3D volumes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0939-3889
1876-4436
1876-4436
DOI:10.1016/j.zemedi.2020.05.001