A Simple Phase-Sensitive Surface Plasmon Resonance Sensor Based on Simultaneous Polarization Measurement Strategy

The SPR phenomenon results in an abrupt change in the optical phase such that one can measure the phase shift of the reflected light as a sensing parameter. Moreover, many studies have demonstrated that the phase changes more acutely than the intensity, leading to a higher sensitivity to the refract...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 22; p. 7615
Main Authors Li, Meng-Chi, Chen, Kai-Ren, Kuo, Chien-Cheng, Lin, Yu-Xen, Su, Li-Chen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 16.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The SPR phenomenon results in an abrupt change in the optical phase such that one can measure the phase shift of the reflected light as a sensing parameter. Moreover, many studies have demonstrated that the phase changes more acutely than the intensity, leading to a higher sensitivity to the refractive index change. However, currently, the optical phase cannot be measured directly because of its high frequency; therefore, investigators usually have to use complicated techniques for the extraction of phase information. In this study, we propose a simple and effective strategy for measuring the SPR phase shift based on phase-shift interferometry. In this system, the polarization-dependent interference signals are recorded simultaneously by a pixelated polarization camera in a single snapshot. Subsequently, the phase information can be effortlessly acquired by a phase extraction algorithm. Experimentally, the proposed phase-sensitive SPR sensor was successfully applied for the detection of small molecules of glyphosate, which is the most frequently used herbicide worldwide. Additionally, the sensor exhibited a detection limit of 15 ng/mL (0.015 ppm). Regarding its simplicity and effectiveness, we believe that our phase-sensitive SPR system presents a prospective method for acquiring phase signals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21227615