Icaritin inhibits decidualization of endometrial stromal cells

The aim of the present study was to investigate the effects of Icaritin on the proliferation and decidualization of endometrial stromal cells (ESCs). A total of 20 specimens of endometrium were collected during hysterectomy at the Gynecology Department of Shenzhen Nanshan People's Hospital (She...

Full description

Saved in:
Bibliographic Details
Published inExperimental and therapeutic medicine Vol. 14; no. 6; pp. 5949 - 5955
Main Authors Le, Aiwen, Wang, Zhong Hai, Dai, Xiao Yun, Xiao, Tian Hui, Zhuo, Rong, Zhang, Baozhen, Xiao, Zhonglin, Fan, Xiujun
Format Journal Article
LanguageEnglish
Published Greece D.A. Spandidos 01.12.2017
Spandidos Publications
Spandidos Publications UK Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of the present study was to investigate the effects of Icaritin on the proliferation and decidualization of endometrial stromal cells (ESCs). A total of 20 specimens of endometrium were collected during hysterectomy at the Gynecology Department of Shenzhen Nanshan People's Hospital (Shenzhen, China) between August 2014 and December 2015. The endometrium was digested with high concentrations of collagenase and DNase and filtered with meshes, and then the glandular epithelial and stromal cells were separated by the adhesion purification method. The purity of stromal cells was identified by vimetin and cytokeratin 7 immunostaining. The estradiol + progesterone (E2+P4) and/or cyclic adenosine monophosphate (cAMP) were added to induce an in vitro decidualization model, which was used to analyze the effect of Icaritin on the decidualization ability of the human ESCs. The decidualization markers of human ESCs, prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP-1), was analyzed by reverse-transcription quantitative polymerase chain reaction measurements of the mRNA levels, PRL immunostaining and ELISA analysis of the IGFBP-1 protein levels in the cells or cell culture supernatant separately. The results demonstrated that treatment with E2+P4 and/or cAMP for 96 h was able to induce decidualization in ESCs, and that the cells demonstrated polygon-shaped epithelioid changes. The cell nuclei revealed multinuclear changes, and the cells were also observed to be large and round in shape. The PRL expression and upregulated IGFBP-1 mRNA and protein levels in the E2+P4+cAMP treatment group indicated successful decidualization of the in vitro model. However, the addition of Icaritin inhibited the expression of PRL and IGFBP-1 mRNA, as well as IGFBP-1 protein in the induced ESCs compared with groups without Icaritin. These results suggest that Icaritin was able to inhibit the expression of decidualization-related genes in ESCs in vitro. However, the exact mechanisms require further investigation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1792-0981
1792-1015
DOI:10.3892/etm.2017.5278