A Bi-Directional Acoustic Micropump Driven by Oscillating Sharp-Edge Structures

This paper proposes a bi-directional acoustic micropump driven by two groups of oscillating sharp-edge structures: one group of sharp-edge structures with inclined angles of 60° and a width of 40 μm, and another group with inclined angles of 45° and a width of 25 μm. One of the groups of sharp-edge...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 14; no. 4; p. 860
Main Authors Liu, Bendong, Qiao, Meimei, Zhang, Shaohua, Yang, Jiahui
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a bi-directional acoustic micropump driven by two groups of oscillating sharp-edge structures: one group of sharp-edge structures with inclined angles of 60° and a width of 40 μm, and another group with inclined angles of 45° and a width of 25 μm. One of the groups of sharp-edge structures will vibrate under the excitation of the acoustic wave generated with a piezoelectric transducer at its corresponding resonant frequency. When one group of sharp-edge structures vibrates, the microfluid flows from left to right. When the other group of sharp-edge structures vibrates, the microfluid flows in the opposite direction. Some gaps are designed between the sharp-edge structures and the upper surface and the bottom surface of the microchannels, which can reduce the damping between the sharp-edge structures and the microchannels. Actuated with an acoustic wave of a different frequency, the microfluid in the microchannel can be driven bidirectionally by the inclined sharp-edge structures. The experiments show that the acoustic micropump, driven by oscillating sharp-edge structures, can produce a stable flow rate of up to 125 μm/s from left to right, when the transducer was activated at 20.0 kHz. When the transducer was activated at 12.8 kHz, the acoustic micropump can produce a stable flow rate of up to 85 μm/s from right to left. This bi-directional acoustic micropump, driven by oscillating sharp-edge structures, is easy to operate and shows great potential in various applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14040860