An Empirical Validation of the Within-subject Biospecimens Pooling Approach to Minimize Exposure Misclassification in Biomarker-based Studies
Within-subject biospecimens pooling can theoretically reduce bias in dose-response functions from biomarker-based studies when exposure assessment suffers from classical-type error. However, collecting many urine voids each day is cumbersome. We evaluated the empirical validity of a within-subject p...
Saved in:
Published in | Epidemiology (Cambridge, Mass.) Vol. 30; no. 5; p. 756 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2019
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Within-subject biospecimens pooling can theoretically reduce bias in dose-response functions from biomarker-based studies when exposure assessment suffers from classical-type error. However, collecting many urine voids each day is cumbersome. We evaluated the empirical validity of a within-subject pooling approach and compared several options to avoid sampling each void.
In 16 pregnant women who collected a spot of each urine void over several nonconsecutive weeks, we compared concentrations of 10 phenols in daily, weekly, and pregnancy within-subject pools. We pooled either three or all daily samples. In a simulation study using these data, we quantified bias in dose-response functions when using one to 20 urine samples per subject to assess methylparaben (a compound with moderate within-subject variability) and bisphenol A (high variability) exposures.
Correlations between exposure estimates from pools of all and of only three voids per day were above 0.80 for all time windows and compounds, except for benzophenone-3 and triclosan in the daily time window (correlations, 0.57-0.68). With one spot sample to assess pregnancy exposure, correlations were all below 0.74. Using only one biospecimen led to attenuation bias in the dose-response functions of 29% (methylparaben) and 69% (bisphenol A); four samples for methylparaben and 18 for bisphenol A decreased bias to 10%.
For nonpersistent chemicals, collecting and pooling three samples per day instead of all daily samples efficiently estimates exposures over a week or more. Collecting around 20 biospecimens can strongly limit attenuation bias for nonpersistent chemicals such as bisphenol A. |
---|---|
ISSN: | 1531-5487 |
DOI: | 10.1097/EDE.0000000000001056 |