Boundary-Value Problems for Ultraparabolic and Quasi-Ultraparabolic Equations with Alternating Direction of Evolution
We examine the solvability of boundary-value problems for the differential equation h t u t + − 1 m D a 2 m + 1 u − Δu + c x t a u = f x t a ; x ∈ Ω ⊂ ℝ n , 0 < t < T , 0 < a < A , D a k = ∂ k ∂ a k , where the sign of the function h ( t ) arbitrarily alternates in the interval [0 , T ]....
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 250; no. 5; pp. 772 - 779 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We examine the solvability of boundary-value problems for the differential equation
h
t
u
t
+
−
1
m
D
a
2
m
+
1
u
−
Δu
+
c
x
t
a
u
=
f
x
t
a
;
x
∈
Ω
⊂
ℝ
n
,
0
<
t
<
T
,
0
<
a
<
A
,
D
a
k
=
∂
k
∂
a
k
,
where the sign of the function
h
(
t
) arbitrarily alternates in the interval [0
, T
]. The existence and uniqueness theorems of regular (i.e., possessing all generalized derivatives in the Sobolev sense) solutions are proved. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-05042-2 |