Boundary-Value Problems for Ultraparabolic and Quasi-Ultraparabolic Equations with Alternating Direction of Evolution

We examine the solvability of boundary-value problems for the differential equation h t u t + − 1 m D a 2 m + 1 u − Δu + c x t a u = f x t a ; x ∈ Ω ⊂ ℝ n , 0 < t < T , 0 < a < A , D a k = ∂ k ∂ a k , where the sign of the function h ( t ) arbitrarily alternates in the interval [0 , T ]....

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 250; no. 5; pp. 772 - 779
Main Author Kozhanov, A. I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We examine the solvability of boundary-value problems for the differential equation h t u t + − 1 m D a 2 m + 1 u − Δu + c x t a u = f x t a ; x ∈ Ω ⊂ ℝ n , 0 < t < T , 0 < a < A , D a k = ∂ k ∂ a k , where the sign of the function h ( t ) arbitrarily alternates in the interval [0 , T ]. The existence and uniqueness theorems of regular (i.e., possessing all generalized derivatives in the Sobolev sense) solutions are proved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-05042-2