Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker
A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non...
Saved in:
Published in | Journal of power sources Vol. 255; pp. 101 - 107 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.06.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm−1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.
•Cross-linker with proton conductive group was designed and synthesized.•A comparison between the sulfonated and non-sulfonated cross-linkers was made.•By using the sulfonated cross-linker, SPEEK has been successfully modified.•The result membranes showed low methanol crossover as well as high conductivity.•The oxidative stability of the result membranes was much improved also. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2013.12.116 |