Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer

Purpose The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomogr...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 83; no. 1; pp. 459 - 466
Main Authors Chang, Guoping, Ph.D, Chang, Tingting, M.S, Pan, Tinsu, Ph.D, Clark, John W., Ph.D, Mawlawi, Osama R., Ph.D
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.05.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results The average ITVs of the proposed technique were 97.2% ± 0.3% and 81.0% ± 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 ± 0.05 and 0.73 ± 0.16, respectively, for the two studies. Conclusion Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0360-3016
1879-355X
DOI:10.1016/j.ijrobp.2011.06.2002