Neuroprotective effects of triterpene glycosides from glycine max against glutamate induced toxicity in primary cultured rat cortical cells

To examine the neuroprotective effects of Glycine max, we tested its protection against the glutamate-induced toxicity in primary cortical cultured neurons. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 13; no. 8; pp. 9642 - 9648
Main Authors Moon, Hyung-In, Lee, Jai-Heon
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.08.2012
Molecular Diversity Preservation International (MDPI)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To examine the neuroprotective effects of Glycine max, we tested its protection against the glutamate-induced toxicity in primary cortical cultured neurons. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. From such fractionation, two triterpene glycosides, 3-O-[α-l-rhamnopyranosyl(1-2)-β-d-glucopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (1) and 3-O-[β-d-glucopyranosyl(1-2)-β-d-galactopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (2) were isolated with the methanol extracts with of air-dried Glycine max. Among these compounds, compound 2 exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50% at concentrations ranging from 0.1 μM to 10 μM. Therefore, the neuroprotective effect of Glycine max might be due to the inhibition of glutamate-induced toxicity by triterpene glycosides.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms13089642