RTP801 Is Induced in Parkinson's Disease and Mediates Neuron Death by Inhibiting Akt Phosphorylation/Activation

Previously, we reported that RTP801, a stress regulated protein, is induced in multiple cellular models of Parkinson's disease (PD), in an animal model of PD and in dopaminergic neurons of PD patients. In cellular PD models, RTP801 is both sufficient and necessary for death. We further showed t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 28; no. 53; pp. 14363 - 14371
Main Authors Malagelada, Cristina, Jin, Zong Hao, Greene, Lloyd A
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 31.12.2008
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previously, we reported that RTP801, a stress regulated protein, is induced in multiple cellular models of Parkinson's disease (PD), in an animal model of PD and in dopaminergic neurons of PD patients. In cellular PD models, RTP801 is both sufficient and necessary for death. We further showed that RTP801 and PD mimetics such as 6-OHDA trigger neuron death by suppressing activation of the key kinase mammalian target of rapamycin (mTOR). Here, we report that as a consequence of mTOR signaling blockade, 6-OHDA suppresses the phosphorylation and activation of Akt, a major supporter of neuron survival. This effect is mediated by RTP801 and appears to underlie neuron death induced by 6-OHDA. Examination of postmortem dopaminergic neurons reveals a consistent depletion of phospho-Akt, but not of total Akt in PD patients. These observations support a sequential mechanism in which PD-associated stresses induce RTP801, suppress mTOR signaling, deplete phosphorylated/activated Akt and permit neuron degeneration and death.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.3928-08.2008