The transcriptional diversity of 25 Drosophila cell lines

Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 nove...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 21; no. 2; pp. 301 - 314
Main Authors Cherbas, Lucy, Willingham, Aarron, Zhang, Dayu, Yang, Li, Zou, Yi, Eads, Brian D, Carlson, Joseph W, Landolin, Jane M, Kapranov, Philipp, Dumais, Jacqueline, Samsonova, Anastasia, Choi, Jeong-Hyeon, Roberts, Johnny, Davis, Carrie A, Tang, Haixu, van Baren, Marijke J, Ghosh, Srinka, Dobin, Alexander, Bell, Kim, Lin, Wei, Langton, Laura, Duff, Michael O, Tenney, Aaron E, Zaleski, Chris, Brent, Michael R, Hoskins, Roger A, Kaufman, Thomas C, Andrews, Justen, Graveley, Brenton R, Perrimon, Norbert, Celniker, Susan E, Gingeras, Thomas R, Cherbas, Peter
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.02.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are "off" and survival/growth pathways "on." Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common "cell line" gene expression pattern.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
USDOE
AC02-05CH11231
LBNL-5308E
Genentech, Inc., South San Francisco, California 94080, USA.
Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA
Present addresses: Merck & Co., San Francisco, California 94158, USA
Helicos BioSciences Corporation, Cambridge, Massachusetts 02139, USA
ISSN:1088-9051
1549-5469
DOI:10.1101/gr.112961.110