Preserved Inhibitory Control Deficits of Overweight Participants in a Gamified Stop-Signal Task: Experimental Study of Validity

Gamification in mental health could increase training adherence, motivation, and transfer effects, but the external validity of gamified tasks is unclear. This study documents that gamified task variants can show preserved associations between markers of behavioral deficits and health-related variab...

Full description

Saved in:
Bibliographic Details
Published inJMIR serious games Vol. 9; no. 1; p. e25063
Main Authors Schroeder, Philipp Alexander, Lohmann, Johannes, Ninaus, Manuel
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 12.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gamification in mental health could increase training adherence, motivation, and transfer effects, but the external validity of gamified tasks is unclear. This study documents that gamified task variants can show preserved associations between markers of behavioral deficits and health-related variables. We draw on the inhibitory control deficit in overweight populations to investigate effects of gamification on performance measures in a web-based experimental task. This study tested whether associations between inhibitory control and overweight were preserved in a gamified stop-signal task (SST). Two versions of an adaptive SST were developed and tested in an online experiment. Participants (n=111) were randomized to 1 of the 2 task variants and completed a series of questionnaires along with either the gamified SST or a conventional SST. To maximize its possible effects on participants' inhibitory control, the gamified SST included multiple game elements in addition to the task itself and the stimuli. Both variants drew on the identical core mechanics, but the gamified variant included an additional narrative, graphical theme, scoring system with visual and emotional feedback, and the presence of a companion character. In both tasks, food and neutral low-poly stimuli were classified based on their color tone (go trials), but responses were withheld in 25% of the trials (stop trials). Mean go reaction times and stop-signal reaction times (SSRT) were analyzed as measures of performance and inhibitory control. Participants in the gamified SST had longer reaction times (803 [SD 179] ms vs 607 [SD 90] ms) and worse inhibitory control (SSRT 383 [SD 109] ms vs 297 [SD 45] ms). The association of BMI with inhibitory control was relatively small (r=.155, 95% CI .013-.290). Overweight participants had longer reaction times (752 [SD 217] ms vs 672 [SD 137] ms) and SSRTs (363 [SD 116] ms vs 326 [SD 77] ms). Gamification did not interact with the effect of overweight on mean performance or inhibitory control. There were no effects of gamification on mood and user experience, despite a negative effect on perceived efficiency. The detrimental effects of heightened BMI on inhibitory control were preserved in a gamified version of the SST. Overall, the effects of overweight were smaller than in previously published web-based and laboratory studies. Gamification elements can impact behavioral performance, but gamified tasks can still assess inhibitory control deficits. Although our results are promising, according validations may differ for other types of behavior, gamification, and health variables.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2291-9279
2291-9279
DOI:10.2196/25063