Expression profiling of lncRNAs and mRNAs reveals regulation of muscle growth in the Pacific abalone, Haliotis discus hannai
Long non-coding RNAs (lncRNAs) are known to play a major role in the epigenetic regulation of muscle development. Unfortunately there is little understanding of the mechanisms with which they regulate muscle growth in abalone. Therefore, we used RNA-seq to study the muscle transcriptomes of six Hali...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 16839 - 9 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Long non-coding RNAs (lncRNAs) are known to play a major role in the epigenetic regulation of muscle development. Unfortunately there is little understanding of the mechanisms with which they regulate muscle growth in abalone. Therefore, we used RNA-seq to study the muscle transcriptomes of six
Haliotis discus hannai
specimens: three large (L_HD group) and three small (S_HD group). We identified 2463 lncRNAs in abalone muscle belonging to two subtypes: 160 anti-sense lncRNAs and 2303 intergenic lncRNAs (lincRNAs). In the L_HD group, we identified 204 significantly differentially expressed lncRNAs (55 upregulated and 149 downregulated), and 2268 significantly differentially expressed mRNAs (994 upregulated and 1274 downregulated), as compared to the S_HD group. The bioinformatics analysis indicated that lncRNAs were relate to cell growth, regulation of growth, MAPK signaling pathway, TGF-β signaling pathway, PI3K-Akt and insulin signaling pathway, which involved in regulating muscle growth. These findings contribute to understanding the possible regulatory mechanisms of muscle growth in Pacific abalone. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-018-35202-z |