Rapid phenotypic changes in Caenorhabditis elegans under uranium exposure
Pollutants can induce selection pressures on populations, and the effects may be concentration-dependant. The main ways to respond to the stress are acclimation (i.e. plastic changes) and adaptation (i.e. genetic changes). Acclimation provides a short-term response to environmental changes and adapt...
Saved in:
Published in | Ecotoxicology (London) Vol. 22; no. 5; pp. 862 - 868 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.07.2013
Springer Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pollutants can induce selection pressures on populations, and the effects may be concentration-dependant. The main ways to respond to the stress are acclimation (i.e. plastic changes) and adaptation (i.e. genetic changes). Acclimation provides a short-term response to environmental changes and adaptation can have longer-term implications on the future of the population. One way of studying these responses is to conduct studies on the phenotypic changes occurring across generations in populations experimentally subjected to a selective factor (i.e. multigenerational test). To our knowledge, such studies have not been performed with uranium (U). Here, the phenotypic changes were explored across three generations in experimental
Caenorhabditis elegans
populations exposed to different U-concentrations. Significant negative effects of U were detected on survival, generation time, brood size, body length and body bend. At lower U-concentrations, the negative effects were reduced in the second or the third generation, indicating an improvement by acclimation. In contrast, at higher U-concentrations, the negative effects on brood size were amplified across generations. Consequently, under high U-concentrations acclimation may not be sufficient, and adaptation of individuals would be required, to permit the population to avoid extinction. The results highlight the need to consider changes across generations to enhance environmental risk assessment related to U pollution. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0963-9292 1573-3017 |
DOI: | 10.1007/s10646-013-1090-9 |