Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors
The fermentation of glucose, cheese whey and the mixture of glucose and cheese whey were evaluated in this study from two inocula sources (sludge from a UASB reactor for swine wastewater treatment and poultry slaughterhouse) for hydrogen production in continuous anaerobic fluidized bed reactors (AFB...
Saved in:
Published in | International journal of hydrogen energy Vol. 39; no. 3; pp. 1288 - 1296 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.01.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The fermentation of glucose, cheese whey and the mixture of glucose and cheese whey were evaluated in this study from two inocula sources (sludge from a UASB reactor for swine wastewater treatment and poultry slaughterhouse) for hydrogen production in continuous anaerobic fluidized bed reactors (AFBR). For all fermentations, a hydraulic retention time (HRT) of 6 h and a substrate concentration of 5 g COD L−1 were used. In glucose fermentation, the maximum hydrogen yield (HY) was 1.37 mmol H2 g−1 COD. The co-fermentation of the cheese whey and glucose mixture was favorable for the concomitant production of hydrogen and ethanol, with yields of up to 1.7 mmol H2 g−1 COD and 3.45 mol EtOH g−1 COD in AFBR2. The utilization of cheese whey as a sole substrate resulted in an HY of 1.9 mmol H2 g−1 COD. Throughout the study, ethanol fermentation was evident.
•Hydrogen and ethanol production in continuous anaerobic fluidized bed reactors.•1.92 mmol H2 g COD was produced using cheese whey.•3.45 mol EtOH g−1 COD was produced using cheese whey and glucose mixture.•The substrate mixture favored the simultaneous production of hydrogen and ethanol. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0360-3199 1879-3487 |
DOI: | 10.1016/j.ijhydene.2013.11.011 |