Degradation of tetrabromobisphenol A in a paddy soil during sequential anoxic-oxic incubation: Kinetics, metabolites, and potential pathways

Due to the increasing pollution of tetrabromobisphenol A (TBBPA) in paddy soils, it is of great importance to explore the degradation of TBBPA under repeated anoxic-oxic conditions. In the present study, the degradation of TBBPA (kinetics, metabolites and potential pathways) and the influence of low...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 13435 - 10
Main Authors Wei, Gaoling, Zhao, Haiqing, Huang, Deyin, Hou, Meifang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.09.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the increasing pollution of tetrabromobisphenol A (TBBPA) in paddy soils, it is of great importance to explore the degradation of TBBPA under repeated anoxic-oxic conditions. In the present study, the degradation of TBBPA (kinetics, metabolites and potential pathways) and the influence of low molecular weight organic acid i.e., lactic acid were investigated in a paddy soil during sequential anoxic-oxic incubations. Under the anoxic condition, TBBPA in the non-sterile soils was efficiently debrominated into three intermediates (including tri-BBPA, di-BBPA and mono-BBPA) and bisphenol A (BPA) with a rate constant ( k ) of 0.0371 d −1 and a half-life ( t 1/2 ) of 60.8 d. The debromination end product (BPA) steadily accumulated. Next, turning to the oxic conditions, the anaerobically accumulated BPA degraded rapidly, while the intermediates and TBBPA were desorbed from the bound residues and were persistent. The detection of tri-BBPA followed by di-BBPA and mono-BBPA thereafter indicated that the dehalogenation of TBBPA was likely a stepwise removal of bromine atoms. A pathway of TBBPA → tri-BBPA → di-BBPA → mono-BBPA → BPA was thus proposed for TBBPA degradation. The degradation of TBBPA and its metabolites was biologically mediated. Moreover, the biodegradation of TBBPA could be significantly accelerated by the addition of lactic acid as an exogenous carbon source and electron donor, with k being increased to 0.0766 d −1 and t 1/2 being shortened to 31.9 d. The information will improve our understanding of biotic process associated with agronomic practices (such as applying organic fertilizers) contributing to TBBPA attenuation in the natural soil environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-31723-9