Cyclophilin A Isomerisation of Septin 2 Mediates Abscission during Cytokinesis
The isomerase activity of Cyclophilin A is important for midbody abscission during cell division, however, to date, midbody substrates remain unknown. In this study, we report that the GTP-binding protein Septin 2 interacts with Cyclophilin A. We highlight a dynamic series of Septin 2 phenotypes at...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 13; p. 11084 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
04.07.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The isomerase activity of Cyclophilin A is important for midbody abscission during cell division, however, to date, midbody substrates remain unknown. In this study, we report that the GTP-binding protein Septin 2 interacts with Cyclophilin A. We highlight a dynamic series of Septin 2 phenotypes at the midbody, previously undescribed in human cells. Furthermore, Cyclophilin A depletion or loss of isomerase activity is sufficient to induce phenotypic Septin 2 defects at the midbody. Structural and molecular analysis reveals that Septin 2 proline 259 is important for interaction with Cyclophilin A. Moreover, an isomerisation-deficient EGFP-Septin 2 proline 259 mutant displays defective midbody localisation and undergoes impaired abscission, which is consistent with data from cells with loss of Cyclophilin A expression or activity. Collectively, these data reveal Septin 2 as a novel interacting partner and isomerase substrate of Cyclophilin A at the midbody that is required for abscission during cytokinesis in cancer cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1422-0067 1661-6596 1422-0067 1661-6596 |
DOI: | 10.3390/ijms241311084 |