Isolation of neural precursor cells from Alzheimer's disease and aged control postmortem brain

Recent studies demonstrate that isolated neural precursor cells are capable of generating neurons, astrocytes, and oligodendrocytes from neurogenic regions of adult brain. Because these studies use surgically resected or fresh postmortem specimens from young subjects, it is not clear whether neural...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 27; no. 7; pp. 909 - 917
Main Authors Lovell, Mark A., Geiger, Hartmut, Van Zant, Gary E., Lynn, Bert C., Markesbery, William R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies demonstrate that isolated neural precursor cells are capable of generating neurons, astrocytes, and oligodendrocytes from neurogenic regions of adult brain. Because these studies use surgically resected or fresh postmortem specimens from young subjects, it is not clear whether neural precursor cells remain in the brain of normal aged subjects or subjects with Alzheimer's disease (AD). The purpose of this study was to determine if viable precursor cells remain in aged control and AD brain. AD subjects have significantly fewer viable precursor cells in the hippocampus compared with age-matched normal control subjects. Musashi-1 and Ki-67-positive precursor cells from AD self renew, but reach senescence earlier than cells isolated from normal aged control subjects. Precursor cells from AD and aged normal control specimens can differentiate into tubulin- and Tuj-1-positive neurons and GFAP-positive astrocytes. This study demonstrates that viable precursor cells remain in AD and aged normal control brain specimens and can be induced to differentiate. These results raise the possibility of stimulation of inherent precursor cells of aged individuals or AD patients to replace neurons lost in aging and/or neurodegeneration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0197-4580
1558-1497
DOI:10.1016/j.neurobiolaging.2005.05.004